组合数学 (Fall 2016)/Problem Set 5

From TCS Wiki
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Problem 1

An [math]\displaystyle{ n }[/math]-player tournament (竞赛图) [math]\displaystyle{ T([n],E) }[/math] is said to be transitive, if there exists a permutation [math]\displaystyle{ \pi }[/math] of [math]\displaystyle{ [n] }[/math] such that [math]\displaystyle{ \pi_i\lt \pi_j }[/math] for every [math]\displaystyle{ (i,j)\in E }[/math].

Show that for any [math]\displaystyle{ k\ge 3 }[/math], there exists a finite [math]\displaystyle{ N(k) }[/math] such that every tournament of [math]\displaystyle{ n\ge N(k) }[/math] players contains a transitive sub-tournament of [math]\displaystyle{ k }[/math] players. Express [math]\displaystyle{ N(k) }[/math] in terms of Ramsey number.

Problem 2

Let [math]\displaystyle{ G(U,V,E) }[/math] be a bipartite graph. Let [math]\displaystyle{ \delta_U }[/math] be the minimum degree of vertices in [math]\displaystyle{ U }[/math], and [math]\displaystyle{ \Delta_V }[/math] be the maximum degree of vertices in [math]\displaystyle{ V }[/math].

Show that if [math]\displaystyle{ \delta_U\ge \Delta_V }[/math], then there must be a matching in [math]\displaystyle{ G }[/math] such that all vertices in [math]\displaystyle{ U }[/math] are matched.

Problem 3

Use Dilworth theorem to prove the following statement:

  • For any [math]\displaystyle{ n }[/math] distinct finite sets [math]\displaystyle{ S_1,S_2,\ldots,S_n }[/math], there always is a collection [math]\displaystyle{ \mathcal{F}\subseteq \{S_1,S_2,\ldots,S_n\} }[/math] such that [math]\displaystyle{ |\mathcal{F}|\ge \lfloor\sqrt{n}\rfloor }[/math] and for any different [math]\displaystyle{ A,B,C\in\mathcal{F} }[/math] we have [math]\displaystyle{ A\cup B\neq C }[/math].

Problem 4

A Boolean matrix is a matrix whose entries are either 0 or 1. We call a matrix 1-matrix if all its entries are 1.

Let [math]\displaystyle{ A }[/math] be a Boolean matrix satisfying:

  • there are totally [math]\displaystyle{ m }[/math] 1-entries in [math]\displaystyle{ A }[/math];
  • every row and every column of [math]\displaystyle{ A }[/math] contains at most [math]\displaystyle{ s }[/math] 1-entries;
  • [math]\displaystyle{ A }[/math] does not contain any [math]\displaystyle{ r\times r }[/math] 1-matrix as submatrix.

Use König-Egerváry Theorem to prove: we need at least [math]\displaystyle{ \frac{m}{sr} }[/math] many 1-matrices to precisely cover all the 1-entries in [math]\displaystyle{ A }[/math].