Methods of computing square roots and 组合数学 (Fall 2017)/Problem Set 1: Difference between pages

From TCS Wiki
(Difference between pages)
Jump to navigation Jump to search
imported>Auntof6Bot
m (Resolve link = link text (WP ck err 64) and/or general cleanup using AWB)
 
imported>Etone
No edit summary
 
Line 1: Line 1:
There are a numbers of ways to calculate [[square root]]s of [[number]]s, and even more ways to [[Estimation|estimate]] them.
== Problem 1 ==
#有<math>k</math>种不同的明信片,每种明信片有无限多张,寄给<math>n</math>个人,每人一张,有多少种方法?
#有<math>k</math>种不同的明信片,每种明信片有无限多张,寄给<math>n</math>个人,每人一张,每个人必须收到不同种类的明信片,有多少种方法?
#有<math>k</math>种不同的明信片,每种明信片有无限多张,寄给<math>n</math>个人,每人收到<math>r</math>张不同的明信片(但不同的人可以收到相同的明信片),有多少种方法?
#只有一种明信片,共有<math>m</math>张,寄给<math>n</math>个人,全部寄完,每个人可以收多张明信片或者不收明信片,有多少种方法?
#有<math>k</math>种不同的明信片,其中第<math>i</math>种明信片有<math>m_i</math>张,寄给<math>n</math>个人,全部寄完,每个人可以收多张明信片或者不收明信片,有多少种方法?


The mathematical operation of finding a root is the opposite operation of [[exponentiation]], and therefore involves a similar but reverse thought process.
== Problem 2 ==
Find the number of ways to select <math>2n</math> balls from <math>n</math> identical blue balls, <math>n</math> identical red balls and <math>n</math> identical green balls.
* Give a combinatorial proof for the problem.
* Give an algebraic proof for the problem.


Firstly, one needs to know how [[Arithmetic precision|precise]] the result is expected to be.  This is because often [[square root]]s are [[Irrational numbers|irrational]].  For example, square root of a nice round [[whole number]] '''28''' is a [[Fraction (mathematics)|fraction]] which in its [[Decimal places|decimal notation]] has [[Infinity|infinite]] length, and therefore it is impossible to express it exactly:<math display="block">\sqrt{28} \approx 5.291502622129181....</math>
== Problem 3 ==
*一个长度为<math>n</math>的“山峦”是如下由<math>n</math>个"/"和<math>n</math>个"\"组成的,从坐标<math>(0,0)</math>到<math>(0,2n)</math>的折线,但任何时候都不允许低于<math>x</math>轴。例如下图:


Moreover, for some [[real number]]s the square root is a [[complex number]]. For example, square root of '''-4''' is a complex number '''2''[[imaginary unit|i]]''''' :<math display="block">\sqrt{-4} = 2 i</math>
    /\
  / \/\/\    /\/\
  /        \/\/    \/\/\
  ----------------------
:长度为<math>n</math>的“山峦”有多少?


In many cases there may be multiple valid answers.  For example, square root of '''4''' is '''2''', but '''-2''' is also a valid answer.  One can verify that they are both valid answers by squaring each candidate answer and checking if you obtain '''4''' as the result of verification:<math display="block">2^2 = 2 \times 2 = 4</math>
*一个长度为<math>n</math>的“地貌”是由<math>n</math>个"/"和<math>n</math>个"\"组成的,从坐标<math>(0,0)</math>到<math>(0,2n)</math>的折线,允许低于<math>x</math>轴。长度为<math>n</math>的“地貌”有多少?


<math display="block">(-2)^2=(-2) \times (-2) = 4</math>
== Problem 4==
李雷和韩梅梅竞选学生会主席,韩梅梅获得选票 <math>p</math> 张,李雷获得选票 <math>q</math> 张,<math>p>q</math>。我们将总共的 <math>p+q</math> 张选票一张一张的点数,有多少种选票的排序方式使得在整个点票过程中,韩梅梅的票数一直高于李雷的票数?等价地,假设选票均匀分布的随机排列,以多大概率在整个点票过程中,韩梅梅的票数一直高于李雷的票数。


Please note that calculating a square root is a special case of the problem of [[Nth root|calculating N<sup>th</sup> root]].
==Problem 5==
A <math>2\times n</math> rectangle is to be paved with <math>1\times 2</math> identical blocks and <math>2\times 2</math> identical blocks. Let <math>f(n)</math> denote the number of ways that can be done. Find a recurrence relation for <math>f(n)</math>, solve the recurrence relation.


== Calculating ==
== Problem 6 ==
Most [[calculator]]s provide a function for calculation of a square root.
Let <math>a_n</math> be a sequence of numbers satisfying the recurrence relation:
:<math>p a_n+q a_{n-1}+r a_{n-2}=0</math>
with initial condition <math>a_0=s</math> and <math>a_1=t</math>, where <math>p,q,r,s,t</math> are constants such that <math>{p}+q+r=0</math>, <math>p\neq 0</math> and <math>s\neq t</math>. Solve the recurrence relation.


{| class="wikitable"
== Problem 7 ==
!
* 令<math>s_n</math>表示长度为<math>n</math>,没有2个连续的1的二进制串的数量,即
!General Steps
*:<math>s_n=|\{x\in\{0,1\}^n\mid \forall 1\le i\le n-1, x_ix_{i+1}\neq 11\}|</math>
!Example
:求 <math>s_n</math>
|-
|width="20%" valign="top"|How to calculate a square root using a simple [[calculator]].
|width="40%" valign="top"|
* ''First, make sure the operating space is clear. This is usually accomplished by clicking the '''C''' button a couple of times.''
* Then type the number whose root you are trying to calculate.
* Then press the square root button (<math>\sqrt{}</math>).
* The number you see on the screen is one of the answers.  Remember, that often there are multiple valid answers, as explained above.
|width="40%" valign="top"|
* Press '''C''' button a couple of times.
* Type '''16'''
* Press <math>\sqrt{}</math> button.
* The answer is '''4.'''  ''Keep in mind that '''-4''' is also a valid answer.''
|}


== Estimating ==
*令<math>t_n</math>表示长度为<math>n</math>,没有3个连续的1的二进制串的数量,即
If the result does not have to be very precise, the following estimation techniques could be helpful:
*:<math>t_n=|\{x\in\{0,1\}^n\mid \forall 1\le i\le n-2, x_ix_{i+1}x_{i+2}\neq 111\}|</math>
{| class="wikitable"
*#给出计算<math>t_n</math>的递归式,并给出足够的初始值。
!Methodology
*#计算<math>t_n</math>的生成函数<math>T(x)=\sum_{n\ge 0}t_n x^n</math>,给出生成函数<math>T(x)</math>的闭合形式。
!Example
|-
|width="49%" valign="top"|Suppose you need to find [[square root]] of some number <math>N</math>
Find some number <math>A</math> such that <math>A^2</math> (that is <math>A</math> squared, or <math>A</math> times <math>A</math>) is [[Approximation|approximately]] [[Equality (mathematics)|equal]] to <math>N</math> ''(but how close? This needs to be expanded)''.


Then we can think of <math>A</math> as being [[Approximation|approximately]] a [[square root]] of <math>N</math>.
注意:只需解生成函数的闭合形式,无需展开。
|width="49%" valign="top"|Suppose we need to estimate the square root of 2.
We know that <math>1^2 = 1</math>, and <math>2^2 = 4</math>.
 
Therefore, one of the answers to <math>\sqrt{2}</math> is somewhere between 1 and 2.
|}
 
==References==
*{{Cite web|url = http://mathworld.wolfram.com/SquareRoot.html | title = Square Root}}
 
 
{{math-stub}}
 
[[Category:Mathematics]]

Revision as of 13:09, 17 September 2017

Problem 1

  1. [math]\displaystyle{ k }[/math]种不同的明信片,每种明信片有无限多张,寄给[math]\displaystyle{ n }[/math]个人,每人一张,有多少种方法?
  2. [math]\displaystyle{ k }[/math]种不同的明信片,每种明信片有无限多张,寄给[math]\displaystyle{ n }[/math]个人,每人一张,每个人必须收到不同种类的明信片,有多少种方法?
  3. [math]\displaystyle{ k }[/math]种不同的明信片,每种明信片有无限多张,寄给[math]\displaystyle{ n }[/math]个人,每人收到[math]\displaystyle{ r }[/math]张不同的明信片(但不同的人可以收到相同的明信片),有多少种方法?
  4. 只有一种明信片,共有[math]\displaystyle{ m }[/math]张,寄给[math]\displaystyle{ n }[/math]个人,全部寄完,每个人可以收多张明信片或者不收明信片,有多少种方法?
  5. [math]\displaystyle{ k }[/math]种不同的明信片,其中第[math]\displaystyle{ i }[/math]种明信片有[math]\displaystyle{ m_i }[/math]张,寄给[math]\displaystyle{ n }[/math]个人,全部寄完,每个人可以收多张明信片或者不收明信片,有多少种方法?

Problem 2

Find the number of ways to select [math]\displaystyle{ 2n }[/math] balls from [math]\displaystyle{ n }[/math] identical blue balls, [math]\displaystyle{ n }[/math] identical red balls and [math]\displaystyle{ n }[/math] identical green balls.

  • Give a combinatorial proof for the problem.
  • Give an algebraic proof for the problem.

Problem 3

  • 一个长度为[math]\displaystyle{ n }[/math]的“山峦”是如下由[math]\displaystyle{ n }[/math]个"/"和[math]\displaystyle{ n }[/math]个"\"组成的,从坐标[math]\displaystyle{ (0,0) }[/math][math]\displaystyle{ (0,2n) }[/math]的折线,但任何时候都不允许低于[math]\displaystyle{ x }[/math]轴。例如下图:
   /\
  /  \/\/\    /\/\
 /        \/\/    \/\/\
 ----------------------
长度为[math]\displaystyle{ n }[/math]的“山峦”有多少?
  • 一个长度为[math]\displaystyle{ n }[/math]的“地貌”是由[math]\displaystyle{ n }[/math]个"/"和[math]\displaystyle{ n }[/math]个"\"组成的,从坐标[math]\displaystyle{ (0,0) }[/math][math]\displaystyle{ (0,2n) }[/math]的折线,允许低于[math]\displaystyle{ x }[/math]轴。长度为[math]\displaystyle{ n }[/math]的“地貌”有多少?

Problem 4

李雷和韩梅梅竞选学生会主席,韩梅梅获得选票 [math]\displaystyle{ p }[/math] 张,李雷获得选票 [math]\displaystyle{ q }[/math] 张,[math]\displaystyle{ p\gt q }[/math]。我们将总共的 [math]\displaystyle{ p+q }[/math] 张选票一张一张的点数,有多少种选票的排序方式使得在整个点票过程中,韩梅梅的票数一直高于李雷的票数?等价地,假设选票均匀分布的随机排列,以多大概率在整个点票过程中,韩梅梅的票数一直高于李雷的票数。

Problem 5

A [math]\displaystyle{ 2\times n }[/math] rectangle is to be paved with [math]\displaystyle{ 1\times 2 }[/math] identical blocks and [math]\displaystyle{ 2\times 2 }[/math] identical blocks. Let [math]\displaystyle{ f(n) }[/math] denote the number of ways that can be done. Find a recurrence relation for [math]\displaystyle{ f(n) }[/math], solve the recurrence relation.

Problem 6

Let [math]\displaystyle{ a_n }[/math] be a sequence of numbers satisfying the recurrence relation:

[math]\displaystyle{ p a_n+q a_{n-1}+r a_{n-2}=0 }[/math]

with initial condition [math]\displaystyle{ a_0=s }[/math] and [math]\displaystyle{ a_1=t }[/math], where [math]\displaystyle{ p,q,r,s,t }[/math] are constants such that [math]\displaystyle{ {p}+q+r=0 }[/math], [math]\displaystyle{ p\neq 0 }[/math] and [math]\displaystyle{ s\neq t }[/math]. Solve the recurrence relation.

Problem 7

  • [math]\displaystyle{ s_n }[/math]表示长度为[math]\displaystyle{ n }[/math],没有2个连续的1的二进制串的数量,即
    [math]\displaystyle{ s_n=|\{x\in\{0,1\}^n\mid \forall 1\le i\le n-1, x_ix_{i+1}\neq 11\}| }[/math]
[math]\displaystyle{ s_n }[/math]
  • [math]\displaystyle{ t_n }[/math]表示长度为[math]\displaystyle{ n }[/math],没有3个连续的1的二进制串的数量,即
    [math]\displaystyle{ t_n=|\{x\in\{0,1\}^n\mid \forall 1\le i\le n-2, x_ix_{i+1}x_{i+2}\neq 111\}| }[/math]
    1. 给出计算[math]\displaystyle{ t_n }[/math]的递归式,并给出足够的初始值。
    2. 计算[math]\displaystyle{ t_n }[/math]的生成函数[math]\displaystyle{ T(x)=\sum_{n\ge 0}t_n x^n }[/math],给出生成函数[math]\displaystyle{ T(x) }[/math]的闭合形式。

注意:只需解生成函数的闭合形式,无需展开。