Differential scanning calorimeter and 组合数学 (Fall 2017)/Problem Set 1: Difference between pages

From TCS Wiki
(Difference between pages)
Jump to navigation Jump to search
imported>Gordonrox24
m (-|)
 
imported>Etone
No edit summary
 
Line 1: Line 1:
'''Differential scanning calorimetry (DSC),''' is an analysis tool widely used in materials sciences, [[thermochemistry]], drug purity  and food quality testing<ref>Thomas Engel, Philip Reid , pp.77-80</ref>. Its speed and ease of operation give instant information about the thermodynamic characteristics that play an important role in understanding complex processes during the formation of substances; for instance, polymer cross-linking, heat exchange due to folding and unfolding of proteins or formation mechanism of single or double stranded DNA <ref>Thomas Engel, Philip Reid, pp.77</ref> <ref>Ilian Jelesarov, Hans Rudolf Bosshard </ref>.  The DSC was firstly invented in 1960 by E.S. Watson and M.J. O’Neil and made available to the market in 1936 at the ''Analytical Chemistry and Applied Spectroscopy'' conference held in Pittsburgh<ref>[https://www.google.com/patents/US3263484 U.S. Patent 3,263,484] </ref>.
== Problem 1 ==
==Physical Structure==
#有<math>k</math>种不同的明信片,每种明信片有无限多张,寄给<math>n</math>个人,每人一张,有多少种方法?
#有<math>k</math>种不同的明信片,每种明信片有无限多张,寄给<math>n</math>个人,每人一张,每个人必须收到不同种类的明信片,有多少种方法?
#有<math>k</math>种不同的明信片,每种明信片有无限多张,寄给<math>n</math>个人,每人收到<math>r</math>张不同的明信片(但不同的人可以收到相同的明信片),有多少种方法?
#只有一种明信片,共有<math>m</math>张,寄给<math>n</math>个人,全部寄完,每个人可以收多张明信片或者不收明信片,有多少种方法?
#有<math>k</math>种不同的明信片,其中第<math>i</math>种明信片有<math>m_i</math>张,寄给<math>n</math>个人,全部寄完,每个人可以收多张明信片或者不收明信片,有多少种方法?


[[File:For upload2.png|thumb|upright=1.0|'''Figure 1. '''Schematic drawing of heat flux Differential Scanning Calorimetry.]]
== Problem 2 ==
Find the number of ways to select <math>2n</math> balls from <math>n</math> identical blue balls, <math>n</math> identical red balls and <math>n</math> identical green balls.
* Give a combinatorial proof for the problem.
* Give an algebraic proof for the problem.


The two most common types of differential scanning calorimeter, are ''heat flux DSC'', which operates by keeping the heat supply to the system as constant and ''power-compensated DSC'', which works by maintaining the power supplied to the calorimeter as constant. In general, a DSC calculates heat changes by measuring the temperature difference between the sample and reference holder. The typical design of the ''heat flux DSC'' can be seen from ''' Figure 1'''. It contains the ''sample holder'', where the material of interest is placed, and the ''reference holder'', which is generally kept empty. Both of these are placed on a ''support'', which is in good contact with the ''walls'' of calorimeter. The ''heating resistor'' is attached to the boundary walls that enables one to obtain a furnace generating and keeping the required heat amount inside the enclosure. The ''thermocouple'' connected to both sample and reference holder is a measuring device that gives the temperature to be used in the analysis. Heat supplied by the ''heating resistor'' flows further into the sample and the reference materials chambers. 
== Problem 3 ==
*一个长度为<math>n</math>的“山峦”是如下由<math>n</math>个"/"和<math>n</math>个"\"组成的,从坐标<math>(0,0)</math>到<math>(0,2n)</math>的折线,但任何时候都不允许低于<math>x</math>轴。例如下图:


==Theory==
    /\
[[File:Figure theory 2.tif|thumb|upright=1.4|'''Figure 2.'''The schematic drawing with all variables assigned for theoretical analysis.]]
  /  \/\/\    /\/\
The simplest theoretical approach to understand the working mechanism of DSC’s is called the simplified ''linear model'' and makes use of the following assumptions <ref>Dr. G. W. H. Höhne, Dr. W. F. Hemminger, Dr. H.-J. Flammersheim, pp. 21-22</ref>:
  /        \/\/    \/\/\
# The heat flow rate is constant,
  ----------------------
# No interaction between the sample and reference,
:长度为<math>n</math>的“山峦”有多少?
# Only heat capacities of sample and reference are considered,
# The temperature being measured to be the current temperature of sample,
# The system is isolated from surrounding, that is no heat exchange with outside.


The Fourier’s law of heat conduction, which is the fundamental law explaining how the heat is transferred through materials can be used to see the relationship between the temperature and the heat flow in the system. This law states that the amount of heat energy passing through a small portion of an area (A) of a material, which is called [https://en.wikipedia.org/wiki/Heat_flux heat flux]density and denoted by <math display="inline">(\frac{\mathsf{\Phi}}{\mathsf{A}}) </math> is equivalent to [[thermal conductivity]] (k) multiplied by the change in the temperature with respect to position, which can be denoted as  <math display="inline">(- \frac{\mathsf{\Delta}T}{\mathsf{\Delta}x}) </math>. This relationship in an equation form can be written as,
*一个长度为<math>n</math>的“地貌”是由<math>n</math>个"/"和<math>n</math>个"\"组成的,从坐标<math>(0,0)</math>到<math>(0,2n)</math>的折线,允许低于<math>x</math>轴。长度为<math>n</math>的“地貌”有多少?
<math display="block"> \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\frac{\mathsf{\Phi}} {A} = -k \frac{\mathsf{\Delta} T} {\mathsf{\Delta} x}</math>


Generally, in DSC a computer is used to supply heat at specific rate into both the reference and sample holders. When the sample holder contains a substance while the reference kept empty leads to either increase or decrease in temperature of sample holder denoted by  <math display="inline">(T_s)</math> depending on the following processes:
== Problem 4==
# If the process is heat-consuming, that is external heat is needed for the event to take place, which is also called [[endothermic]] then the temperature in the sample holder decreases.
李雷和韩梅梅竞选学生会主席,韩梅梅获得选票 <math>p</math> 张,李雷获得选票 <math>q</math> 张,<math>p>q</math>。我们将总共的 <math>p+q</math> 张选票一张一张的点数,有多少种选票的排序方式使得在整个点票过程中,韩梅梅的票数一直高于李雷的票数?等价地,假设选票均匀分布的随机排列,以多大概率在整个点票过程中,韩梅梅的票数一直高于李雷的票数。
# If the process is heat-releasing, that is extra heat is produced, which is also called [[exothermic]] then the temperature in the sample holder increases.


Then, the resulting change in the heat flow due to these temperature variations can be found by using the Fourier's law as the following,
==Problem 5==
A <math>2\times n</math> rectangle is to be paved with <math>1\times 2</math> identical blocks and <math>2\times 2</math> identical blocks. Let <math>f(n)</math> denote the number of ways that can be done. Find a recurrence relation for <math>f(n)</math>, solve the recurrence relation.


<math display="block">|\mathsf{\Phi}_r|=\frac {kA}{\mathsf{\Delta} x} |\mathsf{\Delta}T_{sr}| </math>
== Problem 6 ==
or
Let <math>a_n</math> be a sequence of numbers satisfying the recurrence relation:
<math display="block">|\mathsf{\Phi}_r|=K|\mathsf{\Delta}T_{sr}|=
:<math>p a_n+q a_{n-1}+r a_{n-2}=0</math>
\begin{cases}
with initial condition <math>a_0=s</math> and <math>a_1=t</math>, where <math>p,q,r,s,t</math> are constants such that <math>{p}+q+r=0</math>, <math>p\neq 0</math> and <math>s\neq t</math>. Solve the recurrence relation.
-K\mathsf{\Delta}T_{sr}, & \text{: exothermic} \\
K\mathsf{\Delta}T_{sr}, & \text{: endothermic}
\end{cases}
</math>


Hence, based on this simple model it turns out that there is a direct proportionality(K) between the heat flow and the temperature variations of the sample. This proportionality constant is dependent on the distance from the wall to the sample shown as (Δx), the [[cross section]] area of the support (A) and the thermal conductivity (k). Generally, the main results of the DSC experiment is an output signal of heat flow rate as a function of temperature, which are called [http://www.masontechnology.ie/x/Usercom_11.pdf DSC curves]<ref>Dr. G. W. H. Höhne, Dr. W. F. Hemminger, Dr. H.-J. Flammersheim, pp.115</ref>. Analysis of these curves plays an important role in determination of heat of transformation, heat of reactions or any changes in heat capacity due to temperature variations, for instance, the [[enthalpy]] of exothermic and endothermic processes can be determined by finding the area under the DSC curve using a mathematical technique called [[integral calculus]]<ref>McElhaney RN</ref>.
== Problem 7 ==
* 令<math>s_n</math>表示长度为<math>n</math>,没有2个连续的1的二进制串的数量,即
*:<math>s_n=|\{x\in\{0,1\}^n\mid \forall 1\le i\le n-1, x_ix_{i+1}\neq 11\}|</math>
:求 <math>s_n</math>


*令<math>t_n</math>表示长度为<math>n</math>,没有3个连续的1的二进制串的数量,即
*:<math>t_n=|\{x\in\{0,1\}^n\mid \forall 1\le i\le n-2, x_ix_{i+1}x_{i+2}\neq 111\}|</math>。
*#给出计算<math>t_n</math>的递归式,并给出足够的初始值。
*#计算<math>t_n</math>的生成函数<math>T(x)=\sum_{n\ge 0}t_n x^n</math>,给出生成函数<math>T(x)</math>的闭合形式。


 
注意:只需解生成函数的闭合形式,无需展开。
==Applications==
===Thermal denaturation of proteins===
One of the most important applications of DCS is related to the thermal unfolding of the proteins, a process called [https://www.britannica.com/science/denaturation denaturation].The DCS’s role in this process is used to determine the temperature range over which proteins exhibit structural changes. In addition to that, when the protein solution is treated under constant heat rate and constant pressure, DSC can determine apparent heat capacities of the proteins. In fact, the denatured proteins turn out to have higher heat capacities and proper detection of changes on them over time can help to find out the extent of unfolding<ref>Michael H. Chiu, Elmar J. Prenner</ref> <ref> Julian M. Sturtevant</ref> <ref>Thomas Engel, Philip Reid , pp.80</ref>.
 
===Evaluation of lipids and fats===
Food quality control is one of the most important issues for human health care and well-being.  There has been reported many unlawful practices with regard to food products, specifically [http://www.encyclopedia.com/sports-and-everyday-life/food-and-drink/food-and-cooking/food-adulteration adulteration] of some highly priced vegetable oils and fats<ref> J. L. McNaughton, C. T Mortimer pp.27-28</ref>. Adulteration is an action of mixing low quality and sometimes harmful ingredients with food products intended to be sold. In this field, DSC is used to analyze the [[thermal]] behaviour of lipids mainly by two processes, the cooling process, which reports information about the [[crystallisation]] and the heating process, which gives information on the melting behaviour of the building blocks of lipids. The adulteration in fats or oils changes the DSC cooling and heating curves. For example, new peaks appear and existing peaks undergo changes<ref> J. L. McNaughton, C. T Mortimer pp.27-28</ref>. Hence, analysis of DSC data can be used in estimation of adulteration process on nutrients.
 
===Drug purity===
DSC has gained quite a lot interest in drug purity investigation because it requires samples with low quantity (1-2mg) and is considerably fast in terms of analysis time<ref>Michael H. Chiu, Elmar J. Prenner</ref>. For instance, by monitoring the effects of foreign substances, it can be found to what extent a drug is pure. It turns out that impurities decrease the melting temperature <math>(T_m) </math> of the drug. In addition, melting temperature can also be used to estimate the thermal stability of drugs, because the higher the <math>(T_m) </math> the more stable is the protein<ref> Bruylants G, Wouters J, Michaux C.</ref>. Therefore, DSC allows instant monitoring of this temperature leading to much easier and faster way of controlling the drug quality.
 
 
==References==
 
{{Reflist}}
 
===Sources===
* Thomas Engel, Philip Reid, ''Physical Chemistry (3rd Edition)'', Prentice Hall (2013)
* Dr. G. W. H. Höhne, Dr. W. F. Hemminger, Dr. H.-J. Flammersheim, ''Differential Scanning Calorimetry.'' Springer (2003)
* J. L. McNaughton, C. T Mortimer, ''Differential Scanning Calorimetry.'' Perkin-Elmer Corp, CRC (1975). Edited by Emma Chiavaro.
* Julian M. Sturtevant, ''Biochemical Applications of Differential Scanning Calorimetry.'' Ann. Rev. Phys. Chem. 1987. 38: 463-88.
* Michael H. Chiu, Elmar J. Prenner, ''Differential scanning calorimetry: An invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions.'' J Pharm Bioallied Sci. 2011 Jan-Mar; 3(1): 39–59.
* Ilian Jelesarov, Hans Rudolf Bosshard, ''Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition.'' J. Mol. Recognit. 1999;12:3–18
* McElhaney RN, ''The use of differential scanning calorimetry and differential thermal analysis in studies of model and biological membranes.'' Chem Phys Lipids. 1982;30:229–59.
* Bruylants G, Wouters J, Michaux C. ''Differential scanning calorimetry in life science: Thermodynamics, Stability, Molecular recognition and application in drug design.''Curr Med Chem. 2005;12:2011–20.

Revision as of 13:09, 17 September 2017

Problem 1

  1. [math]\displaystyle{ k }[/math]种不同的明信片,每种明信片有无限多张,寄给[math]\displaystyle{ n }[/math]个人,每人一张,有多少种方法?
  2. [math]\displaystyle{ k }[/math]种不同的明信片,每种明信片有无限多张,寄给[math]\displaystyle{ n }[/math]个人,每人一张,每个人必须收到不同种类的明信片,有多少种方法?
  3. [math]\displaystyle{ k }[/math]种不同的明信片,每种明信片有无限多张,寄给[math]\displaystyle{ n }[/math]个人,每人收到[math]\displaystyle{ r }[/math]张不同的明信片(但不同的人可以收到相同的明信片),有多少种方法?
  4. 只有一种明信片,共有[math]\displaystyle{ m }[/math]张,寄给[math]\displaystyle{ n }[/math]个人,全部寄完,每个人可以收多张明信片或者不收明信片,有多少种方法?
  5. [math]\displaystyle{ k }[/math]种不同的明信片,其中第[math]\displaystyle{ i }[/math]种明信片有[math]\displaystyle{ m_i }[/math]张,寄给[math]\displaystyle{ n }[/math]个人,全部寄完,每个人可以收多张明信片或者不收明信片,有多少种方法?

Problem 2

Find the number of ways to select [math]\displaystyle{ 2n }[/math] balls from [math]\displaystyle{ n }[/math] identical blue balls, [math]\displaystyle{ n }[/math] identical red balls and [math]\displaystyle{ n }[/math] identical green balls.

  • Give a combinatorial proof for the problem.
  • Give an algebraic proof for the problem.

Problem 3

  • 一个长度为[math]\displaystyle{ n }[/math]的“山峦”是如下由[math]\displaystyle{ n }[/math]个"/"和[math]\displaystyle{ n }[/math]个"\"组成的,从坐标[math]\displaystyle{ (0,0) }[/math][math]\displaystyle{ (0,2n) }[/math]的折线,但任何时候都不允许低于[math]\displaystyle{ x }[/math]轴。例如下图:
   /\
  /  \/\/\    /\/\
 /        \/\/    \/\/\
 ----------------------
长度为[math]\displaystyle{ n }[/math]的“山峦”有多少?
  • 一个长度为[math]\displaystyle{ n }[/math]的“地貌”是由[math]\displaystyle{ n }[/math]个"/"和[math]\displaystyle{ n }[/math]个"\"组成的,从坐标[math]\displaystyle{ (0,0) }[/math][math]\displaystyle{ (0,2n) }[/math]的折线,允许低于[math]\displaystyle{ x }[/math]轴。长度为[math]\displaystyle{ n }[/math]的“地貌”有多少?

Problem 4

李雷和韩梅梅竞选学生会主席,韩梅梅获得选票 [math]\displaystyle{ p }[/math] 张,李雷获得选票 [math]\displaystyle{ q }[/math] 张,[math]\displaystyle{ p\gt q }[/math]。我们将总共的 [math]\displaystyle{ p+q }[/math] 张选票一张一张的点数,有多少种选票的排序方式使得在整个点票过程中,韩梅梅的票数一直高于李雷的票数?等价地,假设选票均匀分布的随机排列,以多大概率在整个点票过程中,韩梅梅的票数一直高于李雷的票数。

Problem 5

A [math]\displaystyle{ 2\times n }[/math] rectangle is to be paved with [math]\displaystyle{ 1\times 2 }[/math] identical blocks and [math]\displaystyle{ 2\times 2 }[/math] identical blocks. Let [math]\displaystyle{ f(n) }[/math] denote the number of ways that can be done. Find a recurrence relation for [math]\displaystyle{ f(n) }[/math], solve the recurrence relation.

Problem 6

Let [math]\displaystyle{ a_n }[/math] be a sequence of numbers satisfying the recurrence relation:

[math]\displaystyle{ p a_n+q a_{n-1}+r a_{n-2}=0 }[/math]

with initial condition [math]\displaystyle{ a_0=s }[/math] and [math]\displaystyle{ a_1=t }[/math], where [math]\displaystyle{ p,q,r,s,t }[/math] are constants such that [math]\displaystyle{ {p}+q+r=0 }[/math], [math]\displaystyle{ p\neq 0 }[/math] and [math]\displaystyle{ s\neq t }[/math]. Solve the recurrence relation.

Problem 7

  • [math]\displaystyle{ s_n }[/math]表示长度为[math]\displaystyle{ n }[/math],没有2个连续的1的二进制串的数量,即
    [math]\displaystyle{ s_n=|\{x\in\{0,1\}^n\mid \forall 1\le i\le n-1, x_ix_{i+1}\neq 11\}| }[/math]
[math]\displaystyle{ s_n }[/math]
  • [math]\displaystyle{ t_n }[/math]表示长度为[math]\displaystyle{ n }[/math],没有3个连续的1的二进制串的数量,即
    [math]\displaystyle{ t_n=|\{x\in\{0,1\}^n\mid \forall 1\le i\le n-2, x_ix_{i+1}x_{i+2}\neq 111\}| }[/math]
    1. 给出计算[math]\displaystyle{ t_n }[/math]的递归式,并给出足够的初始值。
    2. 计算[math]\displaystyle{ t_n }[/math]的生成函数[math]\displaystyle{ T(x)=\sum_{n\ge 0}t_n x^n }[/math],给出生成函数[math]\displaystyle{ T(x) }[/math]的闭合形式。

注意:只需解生成函数的闭合形式,无需展开。