组合数学 (Fall 2017)/Problem Set 3: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>Etone
No edit summary
imported>Etone
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 12: Line 12:




== Problem 2 ==
== Problem 2==
Let <math>\mathcal{H}\subset{[n]\choose k}</math> be a <math>k</math>-uniform hypergraph with vertex set <math>[n]</math>. A '''blocking set'''  for <math>\mathcal{H}</math> is a set <math>B\subseteq[n]</math> of vertices such that every hyperedge <math>S\in\mathcal{H}</math> intersects with <math>B</math>, i.e. <math>T\cap S\neq\emptyset</math>.
 
In particular, when <math>k=2</math>, the hypergraph <math>\mathcal{H}</math> degenerates to a graph, and a blocking set <math>B</math> is now a vertex cover. Indeed, the notion of blocking set is a generalization of vertex cover to hypergraphs. Like the minimum vertex cover problem, finding a minimum blocking set for a hypergraph is NP-hard.
 
*Prove this: For any hypergraph <math>\mathcal{H}\subset{[n]\choose k}</math> with <math>|\mathcal{H}|=m</math>, there is a blocking set <math>B</math> of size at most <math>\left\lceil\frac{n\ln (m+1)}{k}\right\rceil</math>.
 
== Problem 3 ==


A set of vertices <math>D\subseteq V</math> of graph <math>G(V,E)</math> is a [http://en.wikipedia.org/wiki/Dominating_set ''dominating set''] if for every <math>v\in V</math>, it holds that <math>v\in D</math> or <math>v</math> is adjacent to a vertex in <math>D</math>. The problem of computing minimum dominating set is NP-hard.  
A set of vertices <math>D\subseteq V</math> of graph <math>G(V,E)</math> is a [http://en.wikipedia.org/wiki/Dominating_set ''dominating set''] if for every <math>v\in V</math>, it holds that <math>v\in D</math> or <math>v</math> is adjacent to a vertex in <math>D</math>. The problem of computing minimum dominating set is NP-hard.  
Line 20: Line 27:
* Try to obtain an upper bound for the size of dominating set using Lovász Local Lemma. Is it better or worse than previous one?
* Try to obtain an upper bound for the size of dominating set using Lovász Local Lemma. Is it better or worse than previous one?


== Problem 3==
Let <math>\mathcal{H}\subset{[n]\choose k}</math> be a <math>k</math>-uniform hypergraph with vertex set <math>[n]</math>. A '''blocking set'''  for <math>\mathcal{H}</math> is a set <math>B\subseteq[n]</math> of vertices such that every hyperedge <math>S\in\mathcal{H}</math> intersects with <math>B</math>, i.e. <math>T\cap S\neq\emptyset</math>.


In particular, when <math>k=2</math>, the hypergraph <math>\mathcal{H}</math> degenerates to a graph, and a blocking set <math>B</math> is a vertex cover. Hence the notion of blocking set is a generalization of vertex cover to hypergraphs. Like the minimum vertex cover problem, finding a minimum blocking set for a hypergraph is NP-hard.
== Problem 4 ==
 
*Prove this: For any hypergraph <math>\mathcal{H}\subset{[n]\choose k}</math> with <math>|\mathcal{H}|=m</math>, there is a blocking set <math>B</math> of size at most <math>\left\lceil\frac{n\ln (m+1)}{k}\right\rceil</math>.
 
== Problem 3 ==
Let <math>H(W,F)</math> be a graph and <math>n>|W|</math> be an integer. It is known that for some graph <math>G(V,E)</math> such that <math>|V|=n</math>, <math>|E|=m</math>, <math>G</math> does not contain <math>H</math> as a subgraph. Prove that for <math>k>\frac{n^2\ln n}{m}</math>, there is an edge <math>k</math>-coloring for <math>K_n</math> that <math>K_n</math> contains no monochromatic <math>H</math>.
Let <math>H(W,F)</math> be a graph and <math>n>|W|</math> be an integer. It is known that for some graph <math>G(V,E)</math> such that <math>|V|=n</math>, <math>|E|=m</math>, <math>G</math> does not contain <math>H</math> as a subgraph. Prove that for <math>k>\frac{n^2\ln n}{m}</math>, there is an edge <math>k</math>-coloring for <math>K_n</math> that <math>K_n</math> contains no monochromatic <math>H</math>.


Remark: Let <math>E=\binom{V}{2}</math> be the edge set of <math>K_n</math>. "An edge <math>k</math>-coloring for <math>K_n</math>" is a mapping <math>f:E\to[k]</math>.
Remark: Let <math>E=\binom{V}{2}</math> be the edge set of <math>K_n</math>. "An edge <math>k</math>-coloring for <math>K_n</math>" is a mapping <math>f:E\to[k]</math>.


== Problem 4 ==
== Problem 5 ==


Let <math>G(V,E)</math> be a cycle of length <math>k\cdot n</math> and let <math>V=V_1\cup V_2\cup\dots V_n</math> be a partition of its <math>k\cdot n</math> vertices into <math>n</math> pairwise disjoint subsets, each of cardinality <math>k</math>.  
Let <math>G(V,E)</math> be a cycle of length <math>k\cdot n</math> and let <math>V=V_1\cup V_2\cup\dots V_n</math> be a partition of its <math>k\cdot n</math> vertices into <math>n</math> pairwise disjoint subsets, each of cardinality <math>k</math>.  
For <math>k\ge 11</math> show that there must be an independent set of <math>G</math> containing precisely one vertex from each <math>V_i</math>.
For <math>k\ge 11</math> show that there must be an independent set of <math>G</math> containing precisely one vertex from each <math>V_i</math>.


==Problem 5 ==
==Problem 6 ==
(Erdős-Lovász 1975)
(Erdős-Lovász 1975)



Latest revision as of 12:19, 12 November 2017

Problem 1

(Erdős-Spencer 1974)

Let [math]\displaystyle{ n }[/math] coins of weights 0 and 1 be given. We are also given a scale with which we may weigh any subset of the coins. Our goal is to determine the weights of coins (that is, to known which coins are 0 and which are 1) with the minimal number of weighings.

This problem can be formalized as follows: A collection [math]\displaystyle{ S_1,S_1,\ldots,S_m\subseteq [n] }[/math] is called determining if an arbitrary subset [math]\displaystyle{ T\subseteq[n] }[/math] can be uniquely determined by the cardinalities [math]\displaystyle{ |S_i\cap T|, 1\le i\le m }[/math].

  • Prove that if there is a determining collection [math]\displaystyle{ S_1,S_1,\ldots,S_m\subseteq [n] }[/math], then there is a way to determine the weights of [math]\displaystyle{ n }[/math] coins with [math]\displaystyle{ m }[/math] weighings.
  • Use pigeonhole principle to show that if a collection [math]\displaystyle{ S_1,S_1,\ldots,S_m\subseteq [n] }[/math] is determining, then it must hold that [math]\displaystyle{ m\ge \frac{n}{\log_2(n+1)} }[/math].

(This gives a lower bound for the number of weighings required to determine the weights of [math]\displaystyle{ n }[/math] coins.)


Problem 2

Let [math]\displaystyle{ \mathcal{H}\subset{[n]\choose k} }[/math] be a [math]\displaystyle{ k }[/math]-uniform hypergraph with vertex set [math]\displaystyle{ [n] }[/math]. A blocking set for [math]\displaystyle{ \mathcal{H} }[/math] is a set [math]\displaystyle{ B\subseteq[n] }[/math] of vertices such that every hyperedge [math]\displaystyle{ S\in\mathcal{H} }[/math] intersects with [math]\displaystyle{ B }[/math], i.e. [math]\displaystyle{ T\cap S\neq\emptyset }[/math].

In particular, when [math]\displaystyle{ k=2 }[/math], the hypergraph [math]\displaystyle{ \mathcal{H} }[/math] degenerates to a graph, and a blocking set [math]\displaystyle{ B }[/math] is now a vertex cover. Indeed, the notion of blocking set is a generalization of vertex cover to hypergraphs. Like the minimum vertex cover problem, finding a minimum blocking set for a hypergraph is NP-hard.

  • Prove this: For any hypergraph [math]\displaystyle{ \mathcal{H}\subset{[n]\choose k} }[/math] with [math]\displaystyle{ |\mathcal{H}|=m }[/math], there is a blocking set [math]\displaystyle{ B }[/math] of size at most [math]\displaystyle{ \left\lceil\frac{n\ln (m+1)}{k}\right\rceil }[/math].

Problem 3

A set of vertices [math]\displaystyle{ D\subseteq V }[/math] of graph [math]\displaystyle{ G(V,E) }[/math] is a dominating set if for every [math]\displaystyle{ v\in V }[/math], it holds that [math]\displaystyle{ v\in D }[/math] or [math]\displaystyle{ v }[/math] is adjacent to a vertex in [math]\displaystyle{ D }[/math]. The problem of computing minimum dominating set is NP-hard.

  • Prove that for every [math]\displaystyle{ d }[/math]-regular graph with [math]\displaystyle{ n }[/math] vertices, there exists a dominating set with size at most [math]\displaystyle{ \frac{n(1+\ln(d+1))}{d+1} }[/math].
  • Try to obtain an upper bound for the size of dominating set using Lovász Local Lemma. Is it better or worse than previous one?


Problem 4

Let [math]\displaystyle{ H(W,F) }[/math] be a graph and [math]\displaystyle{ n\gt |W| }[/math] be an integer. It is known that for some graph [math]\displaystyle{ G(V,E) }[/math] such that [math]\displaystyle{ |V|=n }[/math], [math]\displaystyle{ |E|=m }[/math], [math]\displaystyle{ G }[/math] does not contain [math]\displaystyle{ H }[/math] as a subgraph. Prove that for [math]\displaystyle{ k\gt \frac{n^2\ln n}{m} }[/math], there is an edge [math]\displaystyle{ k }[/math]-coloring for [math]\displaystyle{ K_n }[/math] that [math]\displaystyle{ K_n }[/math] contains no monochromatic [math]\displaystyle{ H }[/math].

Remark: Let [math]\displaystyle{ E=\binom{V}{2} }[/math] be the edge set of [math]\displaystyle{ K_n }[/math]. "An edge [math]\displaystyle{ k }[/math]-coloring for [math]\displaystyle{ K_n }[/math]" is a mapping [math]\displaystyle{ f:E\to[k] }[/math].

Problem 5

Let [math]\displaystyle{ G(V,E) }[/math] be a cycle of length [math]\displaystyle{ k\cdot n }[/math] and let [math]\displaystyle{ V=V_1\cup V_2\cup\dots V_n }[/math] be a partition of its [math]\displaystyle{ k\cdot n }[/math] vertices into [math]\displaystyle{ n }[/math] pairwise disjoint subsets, each of cardinality [math]\displaystyle{ k }[/math]. For [math]\displaystyle{ k\ge 11 }[/math] show that there must be an independent set of [math]\displaystyle{ G }[/math] containing precisely one vertex from each [math]\displaystyle{ V_i }[/math].

Problem 6

(Erdős-Lovász 1975)

Let [math]\displaystyle{ \mathcal{H}\subseteq{V\choose k} }[/math] be a [math]\displaystyle{ k }[/math]-uniform [math]\displaystyle{ k }[/math]-regular hypergraph, so that for each [math]\displaystyle{ v\in V }[/math] there are exact [math]\displaystyle{ k }[/math] many [math]\displaystyle{ S\in\mathcal{H} }[/math] having [math]\displaystyle{ v\in S }[/math].

Use the probabilistic method to prove: For [math]\displaystyle{ k\ge 10 }[/math], there is a 2-coloring [math]\displaystyle{ f:V\rightarrow\{0,1\} }[/math] such that [math]\displaystyle{ \mathcal{H} }[/math] does not contain any monochromatic hyperedge [math]\displaystyle{ S\in\mathcal{H} }[/math].