组合数学 (Spring 2013)/Problem Set 3 and Carmichael number: Difference between pages

From TCS Wiki
(Difference between pages)
Jump to navigation Jump to search
imported>Etone
(Created page with "== Problem 1== 一个set family <math>\mathcal{F}\subset{[n]\choose k}</math> 的 '''blocking set''' 是这样一个集合 <math>T\subseteq[n]</math>,使每一个 member set <m…")
 
imported>Addbot
m (Bot: 21 interwiki links moved, now provided by Wikidata on d:q849530)
 
Line 1: Line 1:
== Problem 1==
In [[number theory]] a '''Carmichael number''' is a [[composite number|composite]] positive [[integer]] <math>n</math>, which satisfies the [[congruence]] <math>b^{n-1}\equiv 1\pmod{n}</math> for all integers <math>b</math> which are [[coprime|relatively prime]] to <math>n</math>. Being relatively prime means that they do not have common divisors, other than 1. Such numbers are named after [[Robert Daniel Carmichael|Robert Carmichael]].
一个set family <math>\mathcal{F}\subset{[n]\choose k}</math> 的 '''blocking set''' 是这样一个集合 <math>T\subseteq[n]</math>,使每一个 member set <math>A\in\mathcal{F}</math> 都有 <math>T\cap A\neq\emptyset</math>。当 <math>k=2</math> 的时候,<math>\mathcal{F}</math> 就是一个图,而 blocking set <math>T</math> 就是这个图的顶点覆盖(vertex cover)。因此,blocking set 就是顶点覆盖在超图(hypergraph)上的推广。我们知道最小定点覆盖(minimum vertex cover)问题是 NP-hard 问题,因此求最小 blocking set 也是难的。


证明:任何 <math>\mathcal{F}\subset{[n]\choose k}</math>, <math>|\mathcal{F}|=m</math>,都存在一个不大于 <math>\left\lceil\frac{n\ln m}{k}\right\rceil</math> 的 blocking set。
All [[prime number]]s <math>p</math> satisfy <math>b^{p-1}\equiv 1\pmod{p}</math> for all integers <math>b</math> which are relatively prime to <math>p</math>. This has been proven by the famous mathematician [[Pierre de Fermat]]. In most cases if a number <math>n</math> is composite, it does '''not''' satisfy this congruence equation. So, there exist not so many Carmichael numbers. We can say that Carmichael numbers are composite numbers that behave a little bit like they would be a prime number.  
 
{{Math-stub}}
== Problem 2==
[[Category:Number theory]]
一个图 <math>G(V,E)</math> 的'''支配集''' (dominating set) 是一个顶点集合 <math>D\subseteq V</math>,使得每个顶点 <math>v\in V</math> 要么属于 <math>D</math> 要么有邻居属于 <math>D</math>。最小支配集 (minimum dominating set) 是 NP-hard问题。
 
证明:任何一个 <math>n</math> 个顶点的 <math>d</math>-regular 图(每个顶点恰好有 <math>d</math> 个邻居),必然存在一个不大于 <math>\frac{n(1+\ln(d+1))}{d+1}</math> 的支配集。
 
== Problem 3 ==
<math>H(W,F)\,</math> 为一个图,<math>n>|W|\,</math> 为一个整数。已知存在一个图 <math>G(V,E)\,</math> 有 <math>|V|=n, |E|=m\,</math> 且<font color=red>不包含</font> <math>H\,</math> 子图。
 
证明:对于 <math>k>\frac{n^2\ln n}{m}</math>,存在一个对 <math>K_n\,</math><math>n</math>结点完全图)的<font color=red>边</font>的 <math>k</math> 着色,没有单色(monocharomatic)的<math>H\,</math>。
 
注:令 <math>K_n</math> 的边集为 <math>E={V\choose 2}</math>,“对 <math>K_n</math> 的边的 <math>k</math> 着色",就是一个映射 <math>f: E\rightarrow [k]</math>。
即,每个边选择 <math>k</math> 种颜色之一进行着色,可以任意着色,无需考虑相邻的边是否同色。
 
== Problem 4 ==
一个图<math>G</math> 的 independence number <math>\alpha(G)</math> 为 <math>G</math> 中最大的独立集 (independent set) 的大小。证明Turán定理的对偶(dual)版本:
{{Theorem|定理|
:如果图 <math>G</math> 有 <math>n</math> 个结点,<math>\frac{nk}{2}</math> 条边,<math>k\ge 1</math>,则 <math>\alpha(G)\ge\frac{n}{k+1}</math>。
}}
 
要求至少给出两个版本的证明:
#用概率法证明。
#用Turán定理直接证明。
 
==Problem 5 ==
我们称一个[http://en.wikipedia.org/wiki/Tournament_(graph_theory) '''竞赛图'''] <math>T([n],E)</math> 是[http://en.wikipedia.org/wiki/Tournament_(graph_theory)#Transitivity 传递(transitive)]的,如果存在一个 <math>[n]</math> 的全排列 <math>\pi</math> 使得 <math>(i,j)\in E</math> 当且仅当 <math>\pi_i<\pi_j</math>,即该竞赛图 <math>T([n],E)</math> 的边的方向符合传递性。
 
证明:对任何 <math>k\ge 3</math>,存在 <math>N(k)</math>,对任何的 <math>n\ge N(k)</math> 个点的竞赛图,都存在一个 <math>k</math> 个点的子竞赛图满足传递性。

Latest revision as of 08:08, 11 March 2013

In number theory a Carmichael number is a composite positive integer [math]\displaystyle{ n }[/math], which satisfies the congruence [math]\displaystyle{ b^{n-1}\equiv 1\pmod{n} }[/math] for all integers [math]\displaystyle{ b }[/math] which are relatively prime to [math]\displaystyle{ n }[/math]. Being relatively prime means that they do not have common divisors, other than 1. Such numbers are named after Robert Carmichael.

All prime numbers [math]\displaystyle{ p }[/math] satisfy [math]\displaystyle{ b^{p-1}\equiv 1\pmod{p} }[/math] for all integers [math]\displaystyle{ b }[/math] which are relatively prime to [math]\displaystyle{ p }[/math]. This has been proven by the famous mathematician Pierre de Fermat. In most cases if a number [math]\displaystyle{ n }[/math] is composite, it does not satisfy this congruence equation. So, there exist not so many Carmichael numbers. We can say that Carmichael numbers are composite numbers that behave a little bit like they would be a prime number. Template:Math-stub