概率论 (Summer 2013)/Problem Set 5 and 随机算法 (Spring 2014)/The Monte Carlo Method: Difference between pages

From TCS Wiki
(Difference between pages)
Jump to navigation Jump to search
imported>Zhangchihao
 
imported>Etone
 
Line 1: Line 1:
== Problem 1 ==
= Parameter Estimation =
== Problem 2 ==
Consider the following abstract problem of parameter estimation.
Let <math>G(V,E)</math> be an undirected connected graph with maximum degree <math>\Delta</math>.
* Design an efficient, time reversible, ergodic random walk on <math>G</math> whose stationary distribution is the uniform distribution.
* Let <math>\pi</math> be an arbitrary distribution on <math>V</math> such that <math>\pi(v)>0</math> for all <math>v\in V</math>. Design a time reversible, ergodic random walk on <math>G</math> whose stationary distribution is <math>\pi</math>.


== Problem 3 ==
Let <math>U</math> be a finite set of known size, and let <math>G\subseteq U</math>. We want to estimate the ''parameter'' <math>|G|</math>, i.e. the size of <math>G</math>.


Consider the following random walk on <math>n</math>-dimensional hypercube: Assume we are now at the vertex <math>b_1b_2\dots b_n</math> where each <math>b_i\in\{0,1\}</math>, then
We assume two devices:
* With probability <math>\frac{1}{n+1}</math>, do nothing.
* A '''uniform sampler''' <math>\mathcal{U}</math>, which uniformly and independently samples a member of <math>U</math> upon each calling.
* Otherwise, with probability <math>\frac{1}{n+1}</math> for each coordinate <math>i</math>, flip <math>b_i</math>.
* A '''membership oracle''' of <math>G</math>, denoted <math>\mathcal{O}</math>. Given as the input an <math>x\in U</math>, <math>\mathcal{O}(x)</math> indicates whether or not <math>x</math> is a member of <math>G</math>.
Prove by coupling that the mixing time of this markov chain is <math>O(n\ln n)</math>


== Problem 4 ==
Equipped by <math>\mathcal{U}</math> and  <math>\mathcal{O}</math>, we can have the following Monte Carlo algorithm:
*Choose <math>N</math> independent samples from <math>U</math> by the uniform sampler <math>\mathcal{U}</math>, represented by the random variables <math>X_1,X_2,\ldots, X_N</math>.
* Let <math>Y_i</math> be the indicator random variable defined as <math>Y_i=\mathcal{O}(X_i)</math>, namely, <math>Y_i</math> indicates whether <math>X_i\in G</math>.
* Define the estimator random variable
::<math>Z=\frac{|U|}{N}\sum_{i=1}^N Y_i.</math>


Recall the markov chain we used in class to sample proper colorings: Let <math>G(V,E)</math> be an undirected graph with maximum degree <math>\Delta</math>, <math>q\ge\delta+2</math> is the number of colors. Assume we are currently given a proper coloring, then
It is easy to see that <math>\mathbf{E}[Z]=|G|</math> and we might hope that with high probability the value of <math>Z</math> is close to <math>|G|</math>. Formally, <math>Z</math> is called an '''<math>\epsilon</math>-approximation''' of <math>|G|</math> if
* Pick a vertex <math>v\in V</math> uniformly at random and a color <math>c\in\{1,2,\dots,q\}</math> uniformly at random.
:<math>
* Recolor <math>v</math> with <math>c</math> if this yields a proper coloring, else do nothing.
(1-\epsilon)|G|\le Z\le (1+\epsilon)|G|.
</math>


# Prove that the markov chain is irreducible, aperiodic, time reversible and the stationary distribution is the uniform distribution.
The following theorem states that the probabilistic accuracy of the estimation depends on the number of samples and the ratio between <math>|G|</math> and <math>|U|</math>
# Suppose <math>q\le\Delta+1</math>, show that the markov chain is no longer always irreducible.


== Problem 5 ==
{{Theorem
|Theorem (estimator theorem)|
:Let <math>\alpha=\frac{|G|}{|U|}</math>. Then the Monte Carlo method yields an <math>\epsilon</math>-approximation to <math>|G|</math> with probability at least <math>1-\delta</math> provided
::<math>N\ge\frac{4}{\epsilon^2 \alpha}\ln\frac{2}{\delta}</math>.
}}
{{Proof|
Recall that <math>Y_i</math> indicates whether the <math>i</math>-th sample is in <math>G</math>. Let <math>Y=\sum_{i=1}^NY_i</math>. Then we have <math>Z=\frac{|U|}{N}Y</math>, and hence the event <math>(1-\epsilon)|G|\le Z\le (1+\epsilon)|G|</math> is equivalent to that <math>(1-\epsilon)\frac{|G|}{|U|}N\le Y\le (1+\epsilon)\frac{|G|}{|U|}N</math>. Note that each <math>Y_i</math> is a Bernoulli trial that succeeds with probability <math>\frac{|G|}{|U|}</math>, thus <math>\mathbb{E}[Y]=\frac{|G|}{|U|}N</math>. Then the rest is due to Chernoff bound.}}


Let <math>n,k>0</math> be two numbers and <math>k\le\frac{n}{2}</math>. Let <math>\Omega=\binom{[n]}{k}</math>, i.e., the family all subsets of <math>\{1,\dots,n\}</math> of cardinality <math>k</math> and choose a number <math>p\in[0,1)</math>. We run a markov chain on <math>\Omega</math> in the following way: Assume you are now at some <math>S\in\Omega</math>,
A counting algorithm for the set <math>G</math> has to deal with the following three issues:
* With probability p, do nothing.
# Implement the membership oracle <math>\mathcal{O}</math>. This is usually straightforward, or assumed by the model.
* Otherwise, pick <math>a\in S</math> uniformly at random and pick <math>b\in\{1,2,\dots,n\}-S</math> uniformly at random. Move to <math>S-\{a\}+\{b\}</math>
# Implement the uniform sampler <math>\mathcal{U}</math>. This can be straightforward or highly nontrivial, depending on the problem.
# Deal with exponentially small <math>\alpha=\frac{|G|}{|U|}</math>. This requires us to cleverly choose the universe <math>U</math>. Sometimes this needs some nontrivial ideas.


# Show that this Markov chain is ergodic with uniform stationary distribution. You can choose arbitrary <math>p\in[0,1)</math> to ease your analysis.
= Counting DNFs =
# Using coupling to show that the mixing time is asymptotically <math>O(n\log k)</math> or less.
A disjunctive normal form (DNF) formular is a disjunction (OR) of clauses, where each clause is a conjunction (AND) of literals. For example:
:<math>(x_1\wedge \overline{x_2}\wedge x_3)\vee(x_2\wedge x_4)\vee(\overline{x_1}\wedge x_3\wedge x_4)</math>.
Note the difference from the conjunctive normal forms (CNF).
 
Given a DNF formular <math>\phi</math> as the input, the problem is to count the number of satisfying assignments of <math>\phi</math>. This problem is [http://en.wikipedia.org/wiki/Sharp-P-complete '''#P-complete'''].
 
Naively applying the Monte Carlo method will not give a good answer. Suppose that there are <math>n</math> variables. Let <math>U=\{\mathrm{true},\mathrm{false}\}^n</math> be the set of all truth assignments of the <math>n</math> variables. Let <math>G=\{x\in U\mid \phi(x)=\mathrm{true}\}</math> be the set of satisfying assignments for <math>\phi</math>. The straightforward use of Monte Carlo method samples <math>N</math> assignments from <math>U</math> and check how many of them satisfy <math>\phi</math>. This algorithm fails when <math>|G|/|U|</math> is exponentially small, namely, when exponentially small fraction of the assignments satisfy the input DNF formula.
 
 
;The union of sets problem
We reformulate the DNF counting problem in a more abstract framework, called the '''union of sets''' problem.
 
Let <math>V</math> be a finite universe. We are given <math>m</math> subsets <math>H_1,H_2,\ldots,H_m\subseteq V</math>. The following assumptions hold:
*For all <math>i</math>, <math>|H_i|</math> is computable in poly-time.
*It is possible to sample uniformly from each individual <math>H_i</math>.
*For any <math>x\in V</math>, it can be determined in poly-time whether <math>x\in H_i</math>.
 
The goal is to compute the size of <math>H=\bigcup_{i=1}^m H_i</math>.
 
DNF counting can be interpreted in this general framework as follows. Suppose that the DNF formula <math>\phi</math> is defined on <math>n</math> variables, and <math>\phi</math> contains <math>m</math> clauses <math>C_1,C_2,\ldots,C_m</math>, where clause <math>C_i</math> has <math>k_i</math> literals. Without loss of generality, we assume that in each clause, each variable appears at most once.
* <math>V</math> is the set of all assignments.
*Each <math>H_i</math> is the set of satisfying assignments for the <math>i</math>-th clause <math>C_i</math> of the DNF formular <math>\phi</math>. Then the union of sets <math>H=\bigcup_i H_i</math> gives the set of satisfying assignments for <math>\phi</math>.
* Each clause <math>C_i</math> is a conjunction (AND) of literals. It is not hard to see that <math>|H_i|=2^{n-k_i}</math>, which is efficiently computable.
* Sampling from an <math>H_i</math> is simple: we just fix the assignments of the <math>k_i</math> literals of that clause, and sample uniformly and independently the rest <math>(n-k_i)</math> variable assignments.
* For each assignment <math>x</math>, it is easy to check whether it satisfies a clause <math>C_i</math>, thus it is easy to determine whether <math>x\in H_i</math>.
 
==The coverage algorithm==
We now introduce the coverage algorithm for the union of sets problem.
 
Consider the multiset <math>U</math> defined by
:<math>U=H_1\uplus H_2\uplus\cdots \uplus H_m</math>,
where <math>\uplus</math> denotes the multiset union. It is more convenient to define <math>U</math> as the set
:<math>U=\{(x,i)\mid x\in H_i\}</math>.
For each <math>x\in H</math>, there may be more than one instances of <math>(x,i)\in U</math>. We can choose a unique representative among the multiple instances <math>(x,i)\in U</math> for the same <math>x\in H</math>, by choosing the <math>(x,i)</math> with the minimum <math>i</math>, and form a set <math>G</math>.
 
Formally, <math>G=\{(x,i)\in U\mid \forall (x,j)\in U, j\le i\}</math>. Every <math>x\in H</math> corresponds to a unique <math>(x,i)\in G</math> where <math>i</math> is the smallest among <math>x\in H_i</math>.
 
It is obvious that <math>G\subseteq U</math> and
:<math>|G|=|H|</math>.
 
Therefore, estimation of <math>|H|</math> is reduced to estimation of <math>|G|</math> with <math>G\subseteq U</math>. Then <math>|G|</math> can have an <math>\epsilon</math>-approximation with probability <math>(1-\delta)</math> in poly-time, if we can uniformly sample from <math>U</math> and <math>|G|/|U|</math> is suitably small.
 
An uniform sample from <math>U</math> can be implemented as follows:
* generate an <math>i\in\{1,2,\ldots,m\}</math> with probability <math>\frac{|H_i|}{\sum_{i=1}^m|H_i|}</math>;
* uniformly sample an <math>x\in H_i</math>, and return <math>(x,i)</math>.
 
It is easy to see that this gives a uniform member of <math>U</math>. The above sampling procedure is poly-time because each <math>|H_i|</math> can be computed in poly-time, and sampling uniformly from each <math>H_i</math> is poly-time.
 
We now only need to lower bound the ratio
:<math>\alpha=\frac{|G|}{|U|}</math>.
 
We claim that  
:<math>\alpha\ge\frac{1}{m}</math>.
It is easy to see this, because each <math>x\in H</math> has at most <math>m</math> instances of <math>(x,i)</math> in <math>U</math>, and we already know that <math>|G|=|H|</math>.
 
Due to the estimator theorem, this needs <math>\frac{4m}{\epsilon^2}\ln\frac{2}{\delta}</math> uniform random samples from <math>U</math>.
 
This gives the coverage algorithm for the abstract problem of the union of sets. The DNF counting is a special case of it.

Revision as of 03:05, 12 May 2014

Parameter Estimation

Consider the following abstract problem of parameter estimation.

Let [math]\displaystyle{ U }[/math] be a finite set of known size, and let [math]\displaystyle{ G\subseteq U }[/math]. We want to estimate the parameter [math]\displaystyle{ |G| }[/math], i.e. the size of [math]\displaystyle{ G }[/math].

We assume two devices:

  • A uniform sampler [math]\displaystyle{ \mathcal{U} }[/math], which uniformly and independently samples a member of [math]\displaystyle{ U }[/math] upon each calling.
  • A membership oracle of [math]\displaystyle{ G }[/math], denoted [math]\displaystyle{ \mathcal{O} }[/math]. Given as the input an [math]\displaystyle{ x\in U }[/math], [math]\displaystyle{ \mathcal{O}(x) }[/math] indicates whether or not [math]\displaystyle{ x }[/math] is a member of [math]\displaystyle{ G }[/math].

Equipped by [math]\displaystyle{ \mathcal{U} }[/math] and [math]\displaystyle{ \mathcal{O} }[/math], we can have the following Monte Carlo algorithm:

  • Choose [math]\displaystyle{ N }[/math] independent samples from [math]\displaystyle{ U }[/math] by the uniform sampler [math]\displaystyle{ \mathcal{U} }[/math], represented by the random variables [math]\displaystyle{ X_1,X_2,\ldots, X_N }[/math].
  • Let [math]\displaystyle{ Y_i }[/math] be the indicator random variable defined as [math]\displaystyle{ Y_i=\mathcal{O}(X_i) }[/math], namely, [math]\displaystyle{ Y_i }[/math] indicates whether [math]\displaystyle{ X_i\in G }[/math].
  • Define the estimator random variable
[math]\displaystyle{ Z=\frac{|U|}{N}\sum_{i=1}^N Y_i. }[/math]

It is easy to see that [math]\displaystyle{ \mathbf{E}[Z]=|G| }[/math] and we might hope that with high probability the value of [math]\displaystyle{ Z }[/math] is close to [math]\displaystyle{ |G| }[/math]. Formally, [math]\displaystyle{ Z }[/math] is called an [math]\displaystyle{ \epsilon }[/math]-approximation of [math]\displaystyle{ |G| }[/math] if

[math]\displaystyle{ (1-\epsilon)|G|\le Z\le (1+\epsilon)|G|. }[/math]

The following theorem states that the probabilistic accuracy of the estimation depends on the number of samples and the ratio between [math]\displaystyle{ |G| }[/math] and [math]\displaystyle{ |U| }[/math]

Theorem (estimator theorem)
Let [math]\displaystyle{ \alpha=\frac{|G|}{|U|} }[/math]. Then the Monte Carlo method yields an [math]\displaystyle{ \epsilon }[/math]-approximation to [math]\displaystyle{ |G| }[/math] with probability at least [math]\displaystyle{ 1-\delta }[/math] provided
[math]\displaystyle{ N\ge\frac{4}{\epsilon^2 \alpha}\ln\frac{2}{\delta} }[/math].
Proof.

Recall that [math]\displaystyle{ Y_i }[/math] indicates whether the [math]\displaystyle{ i }[/math]-th sample is in [math]\displaystyle{ G }[/math]. Let [math]\displaystyle{ Y=\sum_{i=1}^NY_i }[/math]. Then we have [math]\displaystyle{ Z=\frac{|U|}{N}Y }[/math], and hence the event [math]\displaystyle{ (1-\epsilon)|G|\le Z\le (1+\epsilon)|G| }[/math] is equivalent to that [math]\displaystyle{ (1-\epsilon)\frac{|G|}{|U|}N\le Y\le (1+\epsilon)\frac{|G|}{|U|}N }[/math]. Note that each [math]\displaystyle{ Y_i }[/math] is a Bernoulli trial that succeeds with probability [math]\displaystyle{ \frac{|G|}{|U|} }[/math], thus [math]\displaystyle{ \mathbb{E}[Y]=\frac{|G|}{|U|}N }[/math]. Then the rest is due to Chernoff bound.

[math]\displaystyle{ \square }[/math]

A counting algorithm for the set [math]\displaystyle{ G }[/math] has to deal with the following three issues:

  1. Implement the membership oracle [math]\displaystyle{ \mathcal{O} }[/math]. This is usually straightforward, or assumed by the model.
  2. Implement the uniform sampler [math]\displaystyle{ \mathcal{U} }[/math]. This can be straightforward or highly nontrivial, depending on the problem.
  3. Deal with exponentially small [math]\displaystyle{ \alpha=\frac{|G|}{|U|} }[/math]. This requires us to cleverly choose the universe [math]\displaystyle{ U }[/math]. Sometimes this needs some nontrivial ideas.

Counting DNFs

A disjunctive normal form (DNF) formular is a disjunction (OR) of clauses, where each clause is a conjunction (AND) of literals. For example:

[math]\displaystyle{ (x_1\wedge \overline{x_2}\wedge x_3)\vee(x_2\wedge x_4)\vee(\overline{x_1}\wedge x_3\wedge x_4) }[/math].

Note the difference from the conjunctive normal forms (CNF).

Given a DNF formular [math]\displaystyle{ \phi }[/math] as the input, the problem is to count the number of satisfying assignments of [math]\displaystyle{ \phi }[/math]. This problem is #P-complete.

Naively applying the Monte Carlo method will not give a good answer. Suppose that there are [math]\displaystyle{ n }[/math] variables. Let [math]\displaystyle{ U=\{\mathrm{true},\mathrm{false}\}^n }[/math] be the set of all truth assignments of the [math]\displaystyle{ n }[/math] variables. Let [math]\displaystyle{ G=\{x\in U\mid \phi(x)=\mathrm{true}\} }[/math] be the set of satisfying assignments for [math]\displaystyle{ \phi }[/math]. The straightforward use of Monte Carlo method samples [math]\displaystyle{ N }[/math] assignments from [math]\displaystyle{ U }[/math] and check how many of them satisfy [math]\displaystyle{ \phi }[/math]. This algorithm fails when [math]\displaystyle{ |G|/|U| }[/math] is exponentially small, namely, when exponentially small fraction of the assignments satisfy the input DNF formula.


The union of sets problem

We reformulate the DNF counting problem in a more abstract framework, called the union of sets problem.

Let [math]\displaystyle{ V }[/math] be a finite universe. We are given [math]\displaystyle{ m }[/math] subsets [math]\displaystyle{ H_1,H_2,\ldots,H_m\subseteq V }[/math]. The following assumptions hold:

  • For all [math]\displaystyle{ i }[/math], [math]\displaystyle{ |H_i| }[/math] is computable in poly-time.
  • It is possible to sample uniformly from each individual [math]\displaystyle{ H_i }[/math].
  • For any [math]\displaystyle{ x\in V }[/math], it can be determined in poly-time whether [math]\displaystyle{ x\in H_i }[/math].

The goal is to compute the size of [math]\displaystyle{ H=\bigcup_{i=1}^m H_i }[/math].

DNF counting can be interpreted in this general framework as follows. Suppose that the DNF formula [math]\displaystyle{ \phi }[/math] is defined on [math]\displaystyle{ n }[/math] variables, and [math]\displaystyle{ \phi }[/math] contains [math]\displaystyle{ m }[/math] clauses [math]\displaystyle{ C_1,C_2,\ldots,C_m }[/math], where clause [math]\displaystyle{ C_i }[/math] has [math]\displaystyle{ k_i }[/math] literals. Without loss of generality, we assume that in each clause, each variable appears at most once.

  • [math]\displaystyle{ V }[/math] is the set of all assignments.
  • Each [math]\displaystyle{ H_i }[/math] is the set of satisfying assignments for the [math]\displaystyle{ i }[/math]-th clause [math]\displaystyle{ C_i }[/math] of the DNF formular [math]\displaystyle{ \phi }[/math]. Then the union of sets [math]\displaystyle{ H=\bigcup_i H_i }[/math] gives the set of satisfying assignments for [math]\displaystyle{ \phi }[/math].
  • Each clause [math]\displaystyle{ C_i }[/math] is a conjunction (AND) of literals. It is not hard to see that [math]\displaystyle{ |H_i|=2^{n-k_i} }[/math], which is efficiently computable.
  • Sampling from an [math]\displaystyle{ H_i }[/math] is simple: we just fix the assignments of the [math]\displaystyle{ k_i }[/math] literals of that clause, and sample uniformly and independently the rest [math]\displaystyle{ (n-k_i) }[/math] variable assignments.
  • For each assignment [math]\displaystyle{ x }[/math], it is easy to check whether it satisfies a clause [math]\displaystyle{ C_i }[/math], thus it is easy to determine whether [math]\displaystyle{ x\in H_i }[/math].

The coverage algorithm

We now introduce the coverage algorithm for the union of sets problem.

Consider the multiset [math]\displaystyle{ U }[/math] defined by

[math]\displaystyle{ U=H_1\uplus H_2\uplus\cdots \uplus H_m }[/math],

where [math]\displaystyle{ \uplus }[/math] denotes the multiset union. It is more convenient to define [math]\displaystyle{ U }[/math] as the set

[math]\displaystyle{ U=\{(x,i)\mid x\in H_i\} }[/math].

For each [math]\displaystyle{ x\in H }[/math], there may be more than one instances of [math]\displaystyle{ (x,i)\in U }[/math]. We can choose a unique representative among the multiple instances [math]\displaystyle{ (x,i)\in U }[/math] for the same [math]\displaystyle{ x\in H }[/math], by choosing the [math]\displaystyle{ (x,i) }[/math] with the minimum [math]\displaystyle{ i }[/math], and form a set [math]\displaystyle{ G }[/math].

Formally, [math]\displaystyle{ G=\{(x,i)\in U\mid \forall (x,j)\in U, j\le i\} }[/math]. Every [math]\displaystyle{ x\in H }[/math] corresponds to a unique [math]\displaystyle{ (x,i)\in G }[/math] where [math]\displaystyle{ i }[/math] is the smallest among [math]\displaystyle{ x\in H_i }[/math].

It is obvious that [math]\displaystyle{ G\subseteq U }[/math] and

[math]\displaystyle{ |G|=|H| }[/math].

Therefore, estimation of [math]\displaystyle{ |H| }[/math] is reduced to estimation of [math]\displaystyle{ |G| }[/math] with [math]\displaystyle{ G\subseteq U }[/math]. Then [math]\displaystyle{ |G| }[/math] can have an [math]\displaystyle{ \epsilon }[/math]-approximation with probability [math]\displaystyle{ (1-\delta) }[/math] in poly-time, if we can uniformly sample from [math]\displaystyle{ U }[/math] and [math]\displaystyle{ |G|/|U| }[/math] is suitably small.

An uniform sample from [math]\displaystyle{ U }[/math] can be implemented as follows:

  • generate an [math]\displaystyle{ i\in\{1,2,\ldots,m\} }[/math] with probability [math]\displaystyle{ \frac{|H_i|}{\sum_{i=1}^m|H_i|} }[/math];
  • uniformly sample an [math]\displaystyle{ x\in H_i }[/math], and return [math]\displaystyle{ (x,i) }[/math].

It is easy to see that this gives a uniform member of [math]\displaystyle{ U }[/math]. The above sampling procedure is poly-time because each [math]\displaystyle{ |H_i| }[/math] can be computed in poly-time, and sampling uniformly from each [math]\displaystyle{ H_i }[/math] is poly-time.

We now only need to lower bound the ratio

[math]\displaystyle{ \alpha=\frac{|G|}{|U|} }[/math].

We claim that

[math]\displaystyle{ \alpha\ge\frac{1}{m} }[/math].

It is easy to see this, because each [math]\displaystyle{ x\in H }[/math] has at most [math]\displaystyle{ m }[/math] instances of [math]\displaystyle{ (x,i) }[/math] in [math]\displaystyle{ U }[/math], and we already know that [math]\displaystyle{ |G|=|H| }[/math].

Due to the estimator theorem, this needs [math]\displaystyle{ \frac{4m}{\epsilon^2}\ln\frac{2}{\delta} }[/math] uniform random samples from [math]\displaystyle{ U }[/math].

This gives the coverage algorithm for the abstract problem of the union of sets. The DNF counting is a special case of it.