组合数学 (Spring 2014)/Problem Set 3: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>Etone
No edit summary
imported>Etone
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
<font size=3 color=red>注意:这次作业时间只有一周。</font>
==Problem 1 ==
==Problem 1 ==
Recall that <math>\chi(G)</math> is the chromatic number of graph <math>G</math>.
(Erdős-Lovász 1975)
 
Let <math>\mathcal{H}\subseteq{V\choose k}</math> be a <math>k</math>-uniform <math>k</math>-regular hypergraph, so that for each <math>v\in V</math> there are ''exact'' <math>k</math> many <math>S\in\mathcal{H}</math> having <math>v\in S</math>.
 
Use the probabilistic method to prove: For <math>k\ge 10</math>, there is a 2-coloring <math>f:V\rightarrow\{0,1\}</math> such that <math>\mathcal{H}</math> does not contain any monochromatic hyperedge <math>S\in\mathcal{H}</math>.
 
== Problem 2 ==
(Frankl 1986)


Prove:
Let <math>\mathcal{F}\subseteq {[n]\choose k}</math> be a <math>k</math>-uniform family, and suppose that it satisfies that <math>A\cap B \not\subset C</math> for any <math>A,B,C\in\mathcal{F}</math>.
* Any graph <math>G</math> must have at least <math>{\chi(G)\choose 2}</math> edges.
* Fix any <math>B\in\mathcal{F}</math>. Show that the family <math>\{A\cap B\mid A\in\mathcal{F}, A\neq B\}</math> is an anti chain.
* For any two graphs <math>G(V,E)</math> and <math>H(V,F)</math>. Prove that <math>\chi(G\cup H)\le\chi(G)\chi(H)</math>.
* Show that <math>|\mathcal{F}|\le 1+{k\choose \lfloor k/2\rfloor}</math>.


==Problem 2 ==
== Problem 3 ==
(Erdős-Lovász 1975)
Given a graph <math>G(V,E)</math>, a ''matching'' is a subset <math>M\subseteq E</math> of edges such that there are no two edges in <math>M</math> sharing a vertex, and a ''star'' is a subset <math>S\subseteq E</math> of edges such that every pair <math>e_1,e_2\in S</math> of distinct edges in <math>S</math> share the same vertex <math>v</math>.


Let <math>\mathcal{H}\subseteq{V\choose k}</math> be a <math>k</math>-uniform <math>k</math>-regular hypergraph, so that for each <math>v\in V</math> there are ''exact'' <math>k</math> many <math>S\in\mathcal{H}</math> having <math>v\in S</math>.
Prove that any graph <math>G</math> containing more than <math>2(k-1)^2</math> edges either contains a matching of size <math>k</math> or a star of size <math>k</math>.


Use the probabilistic method to prove: For <math>k\ge 10</math>, there is a two coloring <math>f:V\rightarrow\{0,1\}</math> such that <math>\mathcal{H}</math> does not contain any monochromatic hyperedge <math>S\in\mathcal{H}</math>.
== Problem 4 ==
Let <math>n\le 2k</math> and let <math>\mathcal{F}\subseteq{[n]\choose k}</math> be a <math>k</math>-uniform family such that <math>A\cup B\neq [n]</math> for all <math>A,B\in\mathcal{F}</math>. Show that <math>|\mathcal{F}|\le\left(1-\frac{k}{n}\right){n\choose k}</math>.

Latest revision as of 23:58, 14 May 2014

注意:这次作业时间只有一周。

Problem 1

(Erdős-Lovász 1975)

Let [math]\displaystyle{ \mathcal{H}\subseteq{V\choose k} }[/math] be a [math]\displaystyle{ k }[/math]-uniform [math]\displaystyle{ k }[/math]-regular hypergraph, so that for each [math]\displaystyle{ v\in V }[/math] there are exact [math]\displaystyle{ k }[/math] many [math]\displaystyle{ S\in\mathcal{H} }[/math] having [math]\displaystyle{ v\in S }[/math].

Use the probabilistic method to prove: For [math]\displaystyle{ k\ge 10 }[/math], there is a 2-coloring [math]\displaystyle{ f:V\rightarrow\{0,1\} }[/math] such that [math]\displaystyle{ \mathcal{H} }[/math] does not contain any monochromatic hyperedge [math]\displaystyle{ S\in\mathcal{H} }[/math].

Problem 2

(Frankl 1986)

Let [math]\displaystyle{ \mathcal{F}\subseteq {[n]\choose k} }[/math] be a [math]\displaystyle{ k }[/math]-uniform family, and suppose that it satisfies that [math]\displaystyle{ A\cap B \not\subset C }[/math] for any [math]\displaystyle{ A,B,C\in\mathcal{F} }[/math].

  • Fix any [math]\displaystyle{ B\in\mathcal{F} }[/math]. Show that the family [math]\displaystyle{ \{A\cap B\mid A\in\mathcal{F}, A\neq B\} }[/math] is an anti chain.
  • Show that [math]\displaystyle{ |\mathcal{F}|\le 1+{k\choose \lfloor k/2\rfloor} }[/math].

Problem 3

Given a graph [math]\displaystyle{ G(V,E) }[/math], a matching is a subset [math]\displaystyle{ M\subseteq E }[/math] of edges such that there are no two edges in [math]\displaystyle{ M }[/math] sharing a vertex, and a star is a subset [math]\displaystyle{ S\subseteq E }[/math] of edges such that every pair [math]\displaystyle{ e_1,e_2\in S }[/math] of distinct edges in [math]\displaystyle{ S }[/math] share the same vertex [math]\displaystyle{ v }[/math].

Prove that any graph [math]\displaystyle{ G }[/math] containing more than [math]\displaystyle{ 2(k-1)^2 }[/math] edges either contains a matching of size [math]\displaystyle{ k }[/math] or a star of size [math]\displaystyle{ k }[/math].

Problem 4

Let [math]\displaystyle{ n\le 2k }[/math] and let [math]\displaystyle{ \mathcal{F}\subseteq{[n]\choose k} }[/math] be a [math]\displaystyle{ k }[/math]-uniform family such that [math]\displaystyle{ A\cup B\neq [n] }[/math] for all [math]\displaystyle{ A,B\in\mathcal{F} }[/math]. Show that [math]\displaystyle{ |\mathcal{F}|\le\left(1-\frac{k}{n}\right){n\choose k} }[/math].