高级算法 (Fall 2019)/Dimension Reduction and Namelist Assignment4 2019: Difference between pages

From TCS Wiki
(Difference between pages)
Jump to navigation Jump to search
imported>Etone
 
imported>Etone
(Created page with "学号(研究生) 姓名 DZ1928004 刘尹成 MG1928002 陈旭 MG1928003 邓煜恒 MG1928005 龚丹毅 MG1928006 冀雅琴 MG1928007 康志杰...")
 
Line 1: Line 1:
= Metric Embedding=
学号(研究生)            姓名
A '''metric space''' is a pair <math>(X,d)</math>, where <math>X</math> is a set and <math>d</math> is a '''metric''' (or '''distance''') on <math>X</math>, i.e., a function
:<math>d:X^2\to\mathbb{R}_{\ge 0}</math>
such that for any <math>x,y,z\in X</math>, the following axioms hold:
# (identity of indiscernibles) <math>d(x,y)=0\Leftrightarrow x=y</math>
# (symmetry) <math>d(x,y)=d(y,x)</math>
# (triangle inequality) <math>d(x,z)\le d(x,y)+d(y,z)</math>


Let <math>(X,d_X)</math> and <math>(Y,d_Y)</math> be two metric spaces. A mapping
DZ1928004 刘尹成
:<math>\phi:X\to Y</math>
is called an '''embedding''' of metric space <math>X</math> into <math>Y</math>. The embedding is said to be with '''distortion'''  <math>\alpha\ge1</math> if for any <math>x,y\in X</math> it holds that
:<math>\frac{1}{\alpha}\cdot d(x,y)\le d(\phi(x),\phi(y))\le \alpha\cdot d(x,y)</math>.


In Computer Science, a typical scenario for the metric embedding is as follows. We want to solve some difficult computation problem on a metric space <math>(X,d)</math>. Instead of solving this problem directly on the original metric space, we embed the metric into a new metric space <math>(Y,d_Y)</math> (with low distortion) where the computation problem is much easier to solve.
MG1928002 陈旭
MG1928003 邓煜恒
MG1928005 龚丹毅
MG1928006 冀雅琴
MG1928007 康志杰
MG1928008 李敏
MG1928009 李同新
MG1928012 蔺惠娟


One particular important case for the metric embedding is to embed a high-dimensional metric space to a new metric space whose dimension is much lower. This is called dimension reduction. This can be very helpful because various very common computation tasks can be very hard to solve on high-dimensional space due to the [https://en.wikipedia.org/wiki/Curse_of_dimensionality curse of dimensionality].
MG1928013 令狐飘


= The Johnson-Lindenstrauss Theorem =
MG1928016 刘姝君
The '''Johnson-Lindenstrauss Theorem''' or '''Johnson-Lindenstrauss Transformation''' (both shorten as '''JLT''') is a fundamental result for dimension reduction in Euclidian space.
MG1928018 卢昱彤
MG1928019 陆晓娟
MG1928020 马晨明
MG1928026 石天润


Recall that in Euclidian space <math>\mathbf{R}^d</math>, for any two points <math>x,y\in\mathbf{R}^d</math>, the Euclidian distance between them is given by <math>\|x-y\|=\sqrt{(x_1-y_1)^2+(x_2-y_2)^2+\cdots +(x_d-y_d)^2}</math>, where <math>\|\cdot\|=\|\cdot\|_2</math> denotes the Euclidian norm (a.k.a. the <math>\ell_2</math>-norm).
MG1928027 谭洁
MG1928029 陶智
MG1928030 肖成龙


The JLT says that in Euclidian space, it is always possible to embed a set of <math>n</math> points in ''arbitrary'' dimension to <math>O(\log n)</math> dimension with constant distortion. The theorem itself is stated formally as follows.
MG1928032 徐梓添


{{Theorem
MG1928037 赵驿航
|Johnson-Lindenstrauss Theorem, 1984|
:For any <math>0<\epsilon<1</math> and any positive integer <math>n</math>, there is a positive integer <math>k=O(\epsilon^{-2}\log n)</math> such that the following holds:
:For any set <math>S\subset\mathbf{R}^d</math> with <math>|S|=n</math>, where <math>d</math> is arbitrary, there is an embedding <math>\phi:\mathbf{R}^d\rightarrow\mathbf{R}^k</math> such that
::<math>\forall x,y\in S,\quad (1-\epsilon)\|x-y\|\le\|\phi(x)-\phi(y)\|\le(1+\epsilon)\|x-y\|</math>.
}}


In fact, the embedding <math>\phi:\mathbf{R}^d\rightarrow\mathbf{R}^k</math> can be as simple as a linear transformation <math>A\in\mathbf{R}^{d\times k}</math> so that <math>\phi(x)=Ax</math> for any <math>x\in\mathbf{R}^{d}</math>.
MG1928038 陈喆
Therefore, the above JLT can be stated more precisely as follows.
MG1928039 都昊


{{Theorem
MG1928045 彭蔚然
|Johnson-Lindenstrauss Theorem (linear embedding)|
:For any <math>0<\epsilon<1</math> and any positive integer <math>n</math>, there is a positive integer <math>k=O(\epsilon^{-2}\log n)</math> such that the following holds:
MG1928046 邱子键
:For any set <math>S\subset\mathbf{R}^d</math> with <math>|S|=n</math>, where <math>d</math> is arbitrary, there is a linear transformation <math>A\in\mathbf{R}^{d\times k}</math> such that
::<math>\forall x,y\in S,\quad (1-\epsilon)\|x-y\|\le\|Ax-Ay\|\le(1+\epsilon)\|x-y\|</math>.
}}


The theorem is proved by the probabilistic method. Specifically, we construct a random matrix <math>A\in\mathbf{R}^{d\times k}</math> and show that with high probability (<math>1-O(1/n)</math>) it is a good embedding satisfying:
MG1928053 姚靖心
:<math>\forall x,y\in S,\quad (1-\epsilon)\|x-y\|\le\|Ax-Ay\|\le(1+\epsilon)\|x-y\|</math>.
Therefore, if such random matrix <math>A\in\mathbf{R}^{d\times k}</math> is efficient to construct, it immediately gives us an efficient randomized algorithm for dimension reduction in the Euclidian space.


There are several such constructions of the random matrix <math>A\in\mathbf{R}^{d\times k}</math>, including:
MG1928054 战杨志豪
* projection onto uniform random <math>k</math>-dimensional subspace of <math>\mathbf{R}^{d}</math>; (The original construction of Johnson and Lindenstrauss in 1984; a simplified analysis of Dasgupta and Gupta in 1999)
* random matrix with i.i.d. Gaussian entries; (due to Indyk and Motwani in 1998)
* random matrix with i.i.d. -1/+1 entries; (due to Achlioptas in 2003)


==JLT via Gaussian matrix==
学号(本科生) 姓名


==Concentration of <math>\chi^2</math>-distribution ==
161200070 赵志展


= Nearest Neighbor Search (NNS)=
161158085 张昱培
161170043 王雅媛
161170054 游振宇


= Locality-Sensitive Hashing (LSH)=
161158084 王译铭
 
161158040 马梦楠
 
161158029 栗卓
161170026 刘世淦
 
学号(交换生) 姓名
198354018 張沁全

Latest revision as of 00:42, 4 December 2019

学号(研究生) 姓名

DZ1928004 刘尹成

MG1928002 陈旭

MG1928003 邓煜恒

MG1928005 龚丹毅

MG1928006 冀雅琴

MG1928007 康志杰

MG1928008 李敏

MG1928009 李同新

MG1928012 蔺惠娟

MG1928013 令狐飘

MG1928016 刘姝君

MG1928018 卢昱彤

MG1928019 陆晓娟

MG1928020 马晨明

MG1928026 石天润

MG1928027 谭洁

MG1928029 陶智

MG1928030 肖成龙

MG1928032 徐梓添

MG1928037 赵驿航

MG1928038 陈喆

MG1928039 都昊

MG1928045 彭蔚然

MG1928046 邱子键

MG1928053 姚靖心

MG1928054 战杨志豪

学号(本科生) 姓名

161200070 赵志展

161158085 张昱培

161170043 王雅媛

161170054 游振宇

161158084 王译铭

161158040 马梦楠

161158029 栗卓

161170026 刘世淦

学号(交换生) 姓名

198354018 張沁全