高级算法 (Fall 2019)/Problem Set 3 and Namelist Assignment4 2019: Difference between pages

From TCS Wiki
(Difference between pages)
Jump to navigation Jump to search
imported>Etone
No edit summary
 
imported>Etone
(Created page with "学号(研究生) 姓名 DZ1928004 刘尹成 MG1928002 陈旭 MG1928003 邓煜恒 MG1928005 龚丹毅 MG1928006 冀雅琴 MG1928007 康志杰...")
 
Line 1: Line 1:
*作业电子版于2019/11/26 23:59 之前提交到邮箱 <font color=blue>njuadvalg@163.com</font>
学号(研究生)            姓名
*每道题目的解答都要有<font color="red" size=5>完整的解题过程</font>。中英文不限。


== Problem 1==
DZ1928004 刘尹成
Let <math>G(V,E)</math> be an undirected graph with positive edge weights <math>w:E\to\mathbb{Z}^+</math>. Given a partition of <math>V</math> into <math>k</math> disjoint subsets <math>S_1,S_2,\ldots,S_k</math>, we define
:<math>w(S_1,S_2,\ldots,S_k)=\sum_{uv\in E\atop \exists i\neq j: u\in S_i,v\in S_j}w(uv)</math>
as the cost of the '''<math>k</math>-cut''' <math>\{S_1,S_2,\ldots,S_k\}</math>. Our goal is to find a <math>k</math>-cut with maximum cost.
# Give a poly-time greedy algorithm for finding the weighted max <math>k</math>-cut. Prove that the approximation ratio is <math>(1-1/k)</math>.
# Consider the following local search algorithm for the weighted max cut (max 2-cut).
::Fill in the blank parenthesis. Give an analysis of the running time of the algorithm. And prove that the approximation ratio is 0.5.
start with an arbitrary bipartition of <math>V</math> into disjoint <math>S_0,S_1</math>;
while (true) do
    if <math>\exists i\in\{0,1\}</math> and <math>v\in S_i</math> such that <font color=red>(______________)</font>
      then <math>v</math> leaves <math>S_i</math> and joins <math>S_{1-i}</math>;
      continue;
    end if
    break;
end


== Problem 2==
MG1928002 陈旭
Given <math>m</math> subsets <math>S_1,S_2,\ldots, S_m\subseteq U</math> of a universe <math>U</math> of size <math>n</math>, we want to find a <math>C\subseteq\{1,2,\ldots, {m}\}</math> of fixed size <math>k=|C|</math> with the maximum '''coverage''' <math>\left|\bigcup_{i\in C}S_i\right|</math>.
MG1928003 邓煜恒
MG1928005 龚丹毅
MG1928006 冀雅琴
MG1928007 康志杰
MG1928008 李敏
MG1928009 李同新
MG1928012 蔺惠娟


* Give a poly-time greedy algorithm for the problem. Prove that the approximation ratio is <math>1-(1-1/k)^k>1-1/e</math>.
MG1928013 令狐飘


MG1928016 刘姝君
MG1928018 卢昱彤
MG1928019 陆晓娟
MG1928020 马晨明
MG1928026 石天润


== Problem 3==
MG1928027 谭洁
In the ''maximum directed cut'' (MAX-DICUT) problem, we are given as input a directed graph <math>G(V,E)</math>. The goal is to partition <math>V</math> into disjoint <math>S</math> and <math>T</math> so that the number of edges in <math>E(S,T)=\{(u,v)\in E\mid u\in S, v\in T\}</math> is maximized. The following is the integer program for MAX-DICUT:
:::<math>
MG1928029 陶智
\begin{align}
\text{maximize} &&& \sum_{(u,v)\in E}y_{u,v}\\
MG1928030 肖成龙
\text{subject to} && y_{u,v} &\le x_u, & \forall (u,v)&\in E,\\
&& y_{u,v} &\le 1-x_v, & \forall (u,v)&\in E,\\
&& x_v &\in\{0,1\}, & \forall v&\in V,\\
&&  y_{u,v} &\in\{0,1\}, & \forall (u,v)&\in E.
\end{align}
</math>
Let <math>x_v^*,y_{u,v}^*</math> denote the optimal solution to the '''LP-relaxation''' of the above integer program.
* Apply the randomized rounding such that for every <math>v\in V</math>, <math>\hat{x}_v=1</math> independently with probability <math>x_v^*</math>. Analyze the approximation ratio (between the expected size of the random cut and OPT).
* Apply another randomized rounding such that for every <math>v\in V</math>, <math>\hat{x}_v=1</math> independently with probability <math>1/4+x_v^*/2</math>. Analyze the approximation ratio for this algorithm.


== Problem 4==
MG1928032 徐梓添
Recall the MAX-SAT problem and its integer program:
:::<math>
\begin{align}
\text{maximize} &&& \sum_{j=1}^my_j\\
\text{subject to} &&& \sum_{i\in S_j^+}x_i+\sum_{i\in S_j^-}(1-x_i)\ge y_j, && 1\le j\le m,\\
&&& x_i\in\{0,1\}, && 1\le i\le n,\\
&&& y_j\in\{0,1\}, && 1\le j\le m.
\end{align}
</math>
Recall that <math>S_j^+,S_j^-\subseteq\{1,2,\ldots,n\}</math> are the respective sets of variables appearing positively and negatively in clause <math>j</math>.


Let <math>x_i^*,y_j^*</math> denote the optimal solution to the '''LP-relaxation''' of the above integer program. In our class we learnt that if <math>\hat{x}_i</math> is round to 1 independently with probability <math>x_i^*</math>, we have approximation ratio <math>1-1/\mathrm{e}</math>.
MG1928037 赵驿航


We consider a generalized rounding scheme such that every <math>\hat{x}_i</math> is round to 1 independently with probability <math>f(x_i^*)</math> for some function <math>f:[0,1]\to[0,1]</math> to be specified.
MG1928038 陈喆
* Suppose <math>f(x)</math> is an arbitrary function satisfying that <math>1-4^{-x}\le f(x)\le 4^{x-1}</math> for any <math>x\in[0,1]</math>. Show that with this rounding scheme, the approximation ratio (between the expected number of satisfied clauses and OPT) is at least <math>3/4</math>.
* Derandomize this algorithm through conditional expectation and give a deterministic polynomial time algorithm with approximation ratio <math>3/4</math>.
MG1928039 都昊
* Is it possible that for some more clever <math>f</math> we can do better than this? Try to justify your argument.


==Problem 5 ==
MG1928045 彭蔚然
The following is the weighted version of set cover problem:
MG1928046 邱子键


Given <math>m</math> subsets <math>S_1,S_2,\ldots,S_m\subseteq U</math>, where <math>U</math> is a universe of size <math>n=|U|</math>, and each subset <math>S_i</math> is assigned a positive weight <math>w_i>0</math>, the goal is to find a <math>C\subseteq\{1,2,\ldots,m\}</math> such that <math>U=\bigcup_{i\in C}S_i</math> and the total weight <math>\sum_{I\in C}w_i</math> is minimized.
MG1928053 姚靖心
* Give an integer program for the problem and its LP relaxation.
 
* Consider the following idea of randomized rounding: independently round each fractional value to <math>\{0,1\}</math> with the probability of the fractional value itself; and repeatedly apply this process to the variables rounded to 0 in previous iterations until <math>U</math> is fully covered. Show that this can return a set cover with <math>O(\log n)</math> approximation ratio with probability at least <math>0.99</math>.
MG1928054 战杨志豪
 
学号(本科生) 姓名
 
161200070 赵志展
 
161158085 张昱培
161170043 王雅媛
161170054 游振宇
 
161158084 王译铭
 
161158040 马梦楠
 
161158029 栗卓
161170026 刘世淦
 
学号(交换生) 姓名
198354018 張沁全

Latest revision as of 00:42, 4 December 2019

学号(研究生) 姓名

DZ1928004 刘尹成

MG1928002 陈旭

MG1928003 邓煜恒

MG1928005 龚丹毅

MG1928006 冀雅琴

MG1928007 康志杰

MG1928008 李敏

MG1928009 李同新

MG1928012 蔺惠娟

MG1928013 令狐飘

MG1928016 刘姝君

MG1928018 卢昱彤

MG1928019 陆晓娟

MG1928020 马晨明

MG1928026 石天润

MG1928027 谭洁

MG1928029 陶智

MG1928030 肖成龙

MG1928032 徐梓添

MG1928037 赵驿航

MG1928038 陈喆

MG1928039 都昊

MG1928045 彭蔚然

MG1928046 邱子键

MG1928053 姚靖心

MG1928054 战杨志豪

学号(本科生) 姓名

161200070 赵志展

161158085 张昱培

161170043 王雅媛

161170054 游振宇

161158084 王译铭

161158040 马梦楠

161158029 栗卓

161170026 刘世淦

学号(交换生) 姓名

198354018 張沁全