组合数学 (Fall 2019)/Problem Set 2 and 组合数学 (Fall 2019)/Problem Set 3: Difference between pages

From TCS Wiki
(Difference between pages)
Jump to navigation Jump to search
imported>Haimin
No edit summary
 
imported>Haimin
No edit summary
 
Line 2: Line 2:


== Problem 1 ==
== Problem 1 ==
假设我们班上有<math>n+2</math>个人,其中两个人是DNA完全相同的双胞胎。我们收上<math>n+2</math>份作业后,将这些作业打乱后发回给全班同学,每人一份。要求每个人不可以收到自己那一份作业或者与自己DNA相同的人的作业。令<math>T_n</math>表示满足这个要求的发回作业的方式,问:
Let <math>L = L(K_{m,n})</math> be the laplacian matrix of the complete bipartite graph <math>K_{mn}</math>.
* 计算<math>T_n</math>是多少;
* Find a simple upper bound on rank<math>(L - nI)</math>. Deduce a lower bound on the number of eigenvalues of $L$ equal to $n$.
* <math>n\to\infty</math>时,随机重排并发回作业后,满足上述要求的概率是多少。
* Assume <math>m\neq n</math>, and do the same as (a) for <math>m</math> instead of <math>n</math>.
* Find the remaining eigenvalues of <math>L</math>.
* Compute <math>\kappa\left(K_{m,n}\right)</math>, the number of spanning trees of <math>\kappa\left(K_{m,n}\right)</math>.
* Give a combinatorial proof of the formula for <math>\kappa\left(K_{m,n}\right)</math>.


== Problem 2 ==
== Problem 2 ==
你要设计一个标志,以下形状中的12条等长线段可以分别由红、绿、蓝三色之一构成。要求考虑这个形状的“转动”和“反转”两种对称。
(Erdős-Spencer 1974)
    __
  __|  |__
|__    __|
    |__|


*定义对称构成的群,可以通过生成元定义,也可以直接把元素都写出来;
Let <math>n</math> coins of weights 0 and 1 be given. We are also given a scale with which we may weigh any subset of the coins. Our goal is to determine the weights of coins (that is, to known which coins are 0 and which are 1) with the minimal number of weighings.
*写出cycle index和pattern inventory;
 
*直接写出三种颜色出现的次数一样多的次数。可以借助一些数学软件如Mathematica的帮助。
This problem can be formalized as follows: A collection <math>S_1,S_1,\ldots,S_m\subseteq [n]</math> is called '''determining''' if an arbitrary subset <math>T\subseteq[n]</math> can be uniquely determined by the cardinalities <math>|S_i\cap T|, 1\le i\le m</math>.
 
* Prove that if there is a determining collection <math>S_1,S_1,\ldots,S_m\subseteq [n]</math>, then there is a way to determine the weights of <math>n</math> coins with <math>m</math> weighings.
* Use pigeonhole principle to show that if a collection <math>S_1,S_1,\ldots,S_m\subseteq [n]</math> is determining, then it must hold that <math>m\ge \frac{n}{\log_2(n+1)}</math>. (This gives a lower bound for the number of weighings required to determine the weights of <math>n</math> coins.)


== Problem 3 ==
== Problem 3 ==
Select a permutation of <math>[n]=\{1,2,\dots,n\}</math> from the symmetric group <math>S_n</math> uniformly at random. (All permutation are supposed to have an equal probability of selection.)
A set of vertices <math>D\subseteq V</math> of graph <math>G(V,E)</math> is a [http://en.wikipedia.org/wiki/Dominating_set ''dominating set''] if for every <math>v\in V</math>, it holds that <math>v\in D</math> or <math>v</math> is adjacent to a vertex in <math>D</math>. The problem of computing minimum dominating set is NP-hard.  
* What is the probability that the cycle containing 1 has length <math>k</math>?
 
* What is the expected number of cycles?
* Prove that for every <math>d</math>-regular graph with <math>n</math> vertices, there exists a dominating set with size at most <math>\frac{n(1+\ln(d+1))}{d+1}</math>.
 
* Try to obtain an upper bound for the size of dominating set using Lovász Local Lemma. Is it better or worse than previous one?


== Problem 4 ==
== Problem 4 ==
For any <math>k</math>-size subset <math>A</math> of vertices set <math>\{1,2,\dots,n\}</math>, there are <math>T_{n,k}</math> forests on the <math>n</math> vertices with exactly <math>m</math> connected components that each element of <math>A</math> is in a different component.
 
* Prove <math>T_{n,k}=\sum_{i=0}^{n-k}\binom{n-k}{i}T_{n-1,k-1+i}</math>.
* Prove there is a 2-coloring of edges of <math>K_n</math> with at most <math>\binom{n}{k}2^{1-\binom{a}{2}}</math> monochromatic <math>K_a</math>.
* Prove <math>T_{n,k}=k\cdot n^{n-k-1}</math>.
* Prove there is a 2-coloring of edges of the complete bipartite graph <math>K_{m,n}</math> with at most <math>\binom{m}{a}\binom{n}{b}2^{1-ab}+\binom{n}{a}\binom{m}{b}2^{1-ab}</math> monochromatic <math>K_{a,b}</math>.


== Problem 5 ==
== Problem 5 ==
Give a '''dynamical programming''' algorithm that given as input a bipartite graph <math>G(U,V,E)</math> where <math>|U|=|V|=n</math>, returns the number of perfect matchings in <math>G</math> within time <math>O(n^22^n)</math>.
Let <math>H(W,F)</math> be a graph and <math>n>|W|</math> be an integer. It is known that for some graph <math>G(V,E)</math> such that <math>|V|=n</math>, <math>|E|=m</math>, <math>G</math> does not contain <math>H</math> as a subgraph. Prove that for <math>k>\frac{n^2\ln n}{m}</math>, there is an edge <math>k</math>-coloring for <math>K_n</math> that <math>K_n</math> contains no monochromatic <math>H</math>.
 
Remark: Let <math>E=\binom{V}{2}</math> be the edge set of <math>K_n</math>. "An edge <math>k</math>-coloring for <math>K_n</math>" is a mapping <math>f:E\to[k]</math>.

Revision as of 02:23, 29 October 2019

Under Construction

Problem 1

Let [math]\displaystyle{ L = L(K_{m,n}) }[/math] be the laplacian matrix of the complete bipartite graph [math]\displaystyle{ K_{mn} }[/math].

  • Find a simple upper bound on rank[math]\displaystyle{ (L - nI) }[/math]. Deduce a lower bound on the number of eigenvalues of $L$ equal to $n$.
  • Assume [math]\displaystyle{ m\neq n }[/math], and do the same as (a) for [math]\displaystyle{ m }[/math] instead of [math]\displaystyle{ n }[/math].
  • Find the remaining eigenvalues of [math]\displaystyle{ L }[/math].
  • Compute [math]\displaystyle{ \kappa\left(K_{m,n}\right) }[/math], the number of spanning trees of [math]\displaystyle{ \kappa\left(K_{m,n}\right) }[/math].
  • Give a combinatorial proof of the formula for [math]\displaystyle{ \kappa\left(K_{m,n}\right) }[/math].

Problem 2

(Erdős-Spencer 1974)

Let [math]\displaystyle{ n }[/math] coins of weights 0 and 1 be given. We are also given a scale with which we may weigh any subset of the coins. Our goal is to determine the weights of coins (that is, to known which coins are 0 and which are 1) with the minimal number of weighings.

This problem can be formalized as follows: A collection [math]\displaystyle{ S_1,S_1,\ldots,S_m\subseteq [n] }[/math] is called determining if an arbitrary subset [math]\displaystyle{ T\subseteq[n] }[/math] can be uniquely determined by the cardinalities [math]\displaystyle{ |S_i\cap T|, 1\le i\le m }[/math].

  • Prove that if there is a determining collection [math]\displaystyle{ S_1,S_1,\ldots,S_m\subseteq [n] }[/math], then there is a way to determine the weights of [math]\displaystyle{ n }[/math] coins with [math]\displaystyle{ m }[/math] weighings.
  • Use pigeonhole principle to show that if a collection [math]\displaystyle{ S_1,S_1,\ldots,S_m\subseteq [n] }[/math] is determining, then it must hold that [math]\displaystyle{ m\ge \frac{n}{\log_2(n+1)} }[/math]. (This gives a lower bound for the number of weighings required to determine the weights of [math]\displaystyle{ n }[/math] coins.)

Problem 3

A set of vertices [math]\displaystyle{ D\subseteq V }[/math] of graph [math]\displaystyle{ G(V,E) }[/math] is a dominating set if for every [math]\displaystyle{ v\in V }[/math], it holds that [math]\displaystyle{ v\in D }[/math] or [math]\displaystyle{ v }[/math] is adjacent to a vertex in [math]\displaystyle{ D }[/math]. The problem of computing minimum dominating set is NP-hard.

  • Prove that for every [math]\displaystyle{ d }[/math]-regular graph with [math]\displaystyle{ n }[/math] vertices, there exists a dominating set with size at most [math]\displaystyle{ \frac{n(1+\ln(d+1))}{d+1} }[/math].
  • Try to obtain an upper bound for the size of dominating set using Lovász Local Lemma. Is it better or worse than previous one?

Problem 4

  • Prove there is a 2-coloring of edges of [math]\displaystyle{ K_n }[/math] with at most [math]\displaystyle{ \binom{n}{k}2^{1-\binom{a}{2}} }[/math] monochromatic [math]\displaystyle{ K_a }[/math].
  • Prove there is a 2-coloring of edges of the complete bipartite graph [math]\displaystyle{ K_{m,n} }[/math] with at most [math]\displaystyle{ \binom{m}{a}\binom{n}{b}2^{1-ab}+\binom{n}{a}\binom{m}{b}2^{1-ab} }[/math] monochromatic [math]\displaystyle{ K_{a,b} }[/math].

Problem 5

Let [math]\displaystyle{ H(W,F) }[/math] be a graph and [math]\displaystyle{ n\gt |W| }[/math] be an integer. It is known that for some graph [math]\displaystyle{ G(V,E) }[/math] such that [math]\displaystyle{ |V|=n }[/math], [math]\displaystyle{ |E|=m }[/math], [math]\displaystyle{ G }[/math] does not contain [math]\displaystyle{ H }[/math] as a subgraph. Prove that for [math]\displaystyle{ k\gt \frac{n^2\ln n}{m} }[/math], there is an edge [math]\displaystyle{ k }[/math]-coloring for [math]\displaystyle{ K_n }[/math] that [math]\displaystyle{ K_n }[/math] contains no monochromatic [math]\displaystyle{ H }[/math].

Remark: Let [math]\displaystyle{ E=\binom{V}{2} }[/math] be the edge set of [math]\displaystyle{ K_n }[/math]. "An edge [math]\displaystyle{ k }[/math]-coloring for [math]\displaystyle{ K_n }[/math]" is a mapping [math]\displaystyle{ f:E\to[k] }[/math].