Theory Seminar and 高级算法 (Fall 2016)/Nonconstructive Proof of Lovász Local Lemma: Difference between pages

From TCS Wiki
(Difference between pages)
Jump to navigation Jump to search
imported>Etone
No edit summary
 
imported>Etone
No edit summary
 
Line 1: Line 1:
* 这是南京大学理论计算机科学的讨论班主页。
Given a sequence of events <math>A_1,A_2,\ldots,A_n</math>, we use the '''dependency graph''' to describe the dependencies between these events.
* 本讨论班是open seminar,欢迎各方向的老师、研究生、以及本科生来参加。


{{Theorem
|Definition (dependency graph)|
:Let <math>A_1,A_2,\ldots,A_n</math> be a sequence of events. A graph <math>D=(V,E)</math> on the set of vertices <math>V=\{1,2,\ldots,n\}</math> is called a '''dependency graph''' for the events <math>A_1,\ldots,A_n</math> if for each <math>i</math>, <math>1\le i\le n</math>, the event <math>A_i</math> is mutually independent of all the events <math>\{A_j\mid (i,j)\not\in E\}</math>.
}}


:{|border="2" width="100%" cellspacing="4" cellpadding="3" rules="all" style="margin:1em 1em 1em 0; border:solid 1px #AAAAAA; border-collapse:collapse;empty-cells:show;"
The notion of mutual independence between an event and a set of events is formally defined as follows.
|-
{{Theorem|Definition (mutual independence)|
|bgcolor="#A7C1F2" align="center"|'''时间地点'''
:An event <math>A</math> is said to be '''mutually independent''' of events <math>B_1,B_2,\ldots, B_k</math>, if for any disjoint <math>I^+,I^-\subseteq\{1,2,\ldots,k\}</math>, it holds that
|bgcolor="#A7C1F2" align="center"|'''Speakers'''
::<math>\Pr\left[A \mid \left(\bigwedge_{i\in I^+}B_i\right) \wedge \left(\bigwedge_{i\in I^-}\overline{B_i}\right)\right]=\Pr[A]</math>.
|bgcolor="#A7C1F2" align="center"|'''Topics'''
}}
|bgcolor="#A7C1F2" align="center"|'''Readings'''
|-
|align="center"|
3:00'''pm''',  2017/11/10<br> 计算机系楼 224
|align="center"|
刘雅辉
||
:A constructive algorithm for the Lovász Local Lemma on permutations
||
[http://www.cs.umd.edu/~srin/PDF/2014/lll-perm-jou.pdf A constructive algorithm for the Lovász Local Lemma on permutations]
|-
|align="center"|
3:00'''pm''',  2017/11/3<br> 计算机系楼 224
|align="center"|
姚鹏晖
||
:Information Complexity
||
[http://people.seas.harvard.edu/~madhusudan/courses/Spring2016/papers/BJKS.pdf The disjointness lower bound of Bar-Yossef ''et al''.]
|-
|align="center"|
3:00'''pm''', 2017/10/20<br> 计算机系楼 <font color=red>224</font>
|align="center"|
樊一麟
||
:Crossing the Logarithmic Barrier for Dynamic Boolean Data Structure Lower Bounds.
||
[http://theory.stanford.edu/~yuhch123/files/RangeCounting.pdf Crossing the Logarithmic Barrier for Dynamic Boolean Data Structure Lower Bounds]
|-
|align="center"|
3:00'''pm''', 2017/9/15<br> 计算机系楼 <font color=red>223</font>
|align="center"|
凤维明
||
:Randomly Coloring Constant Degree Graphs
||
[https://www.math.cmu.edu/~af1p/Texfiles/colorbdd.pdf Dyer-Frieze-Hayes-Vigoda]
|-
|align="center"|
3:00'''pm''',  2017/7/14<br> 计算机系楼 224
|align="center"|
潘笑吟
||
:Optimal Hashing-based Time–Space Trade-offs for Approximate Near Neighbors
||
[https://arxiv.org/pdf/1608.03580.pdf Optimal Hashing-based Time–Space Trade-offs for Approximate Near Neighbors]
|-
|align="center"|
3:00'''pm''',  2017/6/30<br> 计算机系楼 224
|align="center"|
[http://www.ntu.edu.sg/home/xhbei/ '''贝小辉''']<br>(NTU)
||
:'''Cake Cutting: Networked Fairness, Envy and Truth'''
||


|-
;Example
|align="center"|
:Let <math>X_1,X_2,\ldots,X_m</math> be a set of ''mutually independent'' random variables. Each event <math>A_i</math> is a predicate defined on a number of variables among <math>X_1,X_2,\ldots,X_m</math>. Let <math>v(A_i)</math> be the unique smallest set of variables which determine <math>A_i</math>. The dependency graph <math>D=(V,E)</math> is defined by
2:00'''pm''',  2017/6/23<br> 计算机系楼 224
:::<math>(i,j)\in E</math> iff <math>v(A_i)\cap v(A_j)\neq \emptyset</math>.
|align="center"|
[http://homes.soic.indiana.edu/yzhoucs/ '''周源''']<br>(Indiana University)
||
:'''Parameterized Algorithms for Constraint Satisfaction Problems Above Average with Global Cardinality Constraints'''
||
[https://arxiv.org/abs/1511.00648 Parameterized Algorithms for Constraint Satisfaction Problems Above Average with Global Cardinality Constraints]
|-
|align="center"|
3:00'''pm''', 2017/6/16<br> 计算机系楼 224
|align="center"|
刘明谋
||
:Information complexity and direct-sum theorems.
||
[http://people.seas.harvard.edu/~madhusudan/courses/Spring2016/papers/BBCR.pdf BBCR paper]


[http://drops.dagstuhl.de/opus/volltexte/2014/4717/pdf/34.pdf The Information Complexity of Hamming Distance]
The following lemma, known as the Lovász local lemma, first proved by Erdős and Lovász in 1975, is an extremely powerful tool, as it supplies a way for dealing with rare events.


[http://people.seas.harvard.edu/~madhusudan/courses/Spring2016/papers/BJKS.pdf The disjointness lower bound of Bar-Yossef ''et al''.]
{{Theorem
|-
|Lovász Local Lemma (symmetric case)|
|align="center"|
:Let <math>A_1,A_2,\ldots,A_n</math> be a set of events, and assume that there is a <math>p\in[0,1)</math> such that the followings are satisfied:
3:00'''pm''', 2017/5/5<br> 计算机系楼 224
:#for all <math>1\le i\le n</math>, <math>\Pr[A_i]\le p</math>;
|align="center"|
:#the maximum degree of the dependency graph for the events <math>A_1,A_2,\ldots,A_n</math> is <math>d</math>, and
凤维明<br>
:::<math>\mathrm{e}p\cdot (d+1)\le 1</math>.
孙宇鑫
:Then
||
::<math>\Pr\left[\bigwedge_{i=1}^n\overline{A_i}\right]>0</math>.
:What can be sampled locally?
}}
||
[https://arxiv.org/abs/1702.00142 Our PODC 2017 paper]
|-
|align="center"|
3:00'''pm''', 2017/4/28<br> 计算机系楼 224
|align="center"|
[http://www.chihaozhang.com/ 张驰豪]<br>(香港中文大学)
||
:Rapid Mixing of Hypergraph Independent Set.
||
[https://arxiv.org/abs/1610.07999 Hermon-Sly-Zhang's result]
|-
|align="center"|
3:00'''pm''',  2017/4/14<br> 计算机系楼 224
|align="center"|
凤维明
||
:MCMC sampling for independent sets.
||
[http://www.comp.leeds.ac.uk/dyer/papers/dg00.pdf Dyer-Greenhill's algorithm]


[http://www1.icsi.berkeley.edu/ftp/pub/techreports/1999/tr-99-002 Luby-Vigoda's analysis of Glauber dynamics]
We will prove a general version of the local lemma, where the events <math>A_i</math> are not symmetric. This generalization is due to Spencer.
{{Theorem
|Lovász Local Lemma (general case)|
:Let <math>D=(V,E)</math> be the dependency graph of events <math>A_1,A_2,\ldots,A_n</math>. Suppose there exist real numbers <math>x_1,x_2,\ldots, x_n</math> such that <math>0\le x_i<1</math> and for all <math>1\le i\le n</math>,
::<math>\Pr[A_i]\le x_i\prod_{(i,j)\in E}(1-x_j)</math>.
:Then
::<math>\Pr\left[\bigwedge_{i=1}^n\overline{A_i}\right]\ge\prod_{i=1}^n(1-x_i)</math>.
}}


[http://www.emis.de/journals/EJC/Volume_8/PDF/v8i1r8.pdf Vigoda's note]
To see that the general LLL implies symmetric LLL, we set <math>x_i=\frac{1}{d+1}</math> for all <math>i=1,2,\ldots,n</math>. Then we have <math>\left(1-\frac{1}{d+1}\right)^d>\frac{1}{\mathrm{e}}</math>.
|-
|align="center"|
3:00'''pm''',  2017/4/7<br> 计算机系楼 224
|align="center"|
陈海敏
||
:Distributed algorithms for maximal independent set.
||
[http://www.cc.gatech.edu/~vigoda/7530-Spring10/MIS.pdf Luby's algorithm]


[https://arxiv.org/abs/1506.05093 Mohsen Ghaffari's breakthrough paper]
Assume the condition in the symmetric LLL:
|-
:#for all <math>1\le i\le n</math>, <math>\Pr[A_i]\le p</math>;
|align="center"|
:#<math>\mathrm{e}p\cdot(d+1)\le 1</math>;
3:00'''pm''',  2017/3/31<br> 计算机系楼 224
then it is easy to verify that for all <math>1\le i\le n</math>,
|align="center"|
:<math>\Pr[A_i]\le p\le\frac{1}{e(d+1)}<\frac{1}{d+1}\left(1-\frac{1}{d+1}\right)^d\le x_i\prod_{(i,j)\in E}(1-x_j)</math>.
宋仁杰
Due to the general LLL, we have
||
:<math>\Pr\left[\bigwedge_{i=1}^n\overline{A_i}\right]\ge\prod_{i=1}^n(1-x_i)=\left(1-\frac{1}{d+1}\right)^n>0</math>.
:Roots of the independence polynomial.
This proves the symmetric LLL.
||
[https://arxiv.org/abs/1701.08049 On a conjecture of Sokal concerning roots of the independence polynomial]
|-
|align="center"|
3:00'''pm''', 2017/3/24<br> 计算机系楼 224
|align="center"|
'''郑朝栋'''
||
: '''Neighbor Discovery in Cognitive Radio Networks'''
||
[https://arxiv.org/abs/1703.06130 Communication Primitives in Cognitive Radio Networks]
|-
|align="center"|
3:00'''pm''',  2017/3/17<br> 计算机系楼 224
|align="center"|
[http://www.carch.ac.cn/~xmsun/xmsun.htm '''孙晓明''']<br>(中科院计算所)
||
: '''On the Optimality of Tape Merge'''
||
[https://arxiv.org/abs/1610.03266 On the Optimality of Tape Merge of Two Lists with Similar Size]
|-
|align="center"|
4:00'''pm''',  2017/3/10<br> 计算机系楼 224
|align="center"|
宋仁杰
||
:Taylor approximation of non-vanishing complex-valued graph polynomials.
||
[https://arxiv.org/abs/1607.01167 Deterministic polynomial-time approximation algorithms for partition functions and graph polynomials]
[https://arxiv.org/abs/1701.08049 On a conjecture of Sokal concerning roots of the independence polynomial]
|-
|align="center"|
3:30'''pm''',  2016/12/22<br> 计算机系楼 224
|align="center"|
[http://pages.cs.wisc.edu/~hguo/ '''郭珩''']<br>(Queen Mary, University of London)
||
: '''Uniform Sampling through the Lovász Local Lemma'''
||
[https://arxiv.org/abs/1611.01647 Uniform Sampling through the Lovász Local Lemma]
|-
|align="center"|
4:30'''pm''',  2016/12/9<br> 计算机系楼 224
|align="center"|
凤维明
||
: Rigorous Analysis of Asynchronous Gibbs Sampling
||
[https://arxiv.org/pdf/1602.07415.pdf Ensuring Rapid Mixing and Low Bias for Asynchronous Gibbs Sampling]
|-
|align="center"|
2:00'''pm''',  2016/12/6<br> 计算机系楼 224
|align="center"|
[https://www.quantumlah.org/people/penghui '''姚鹏晖''']<br>(U Maryland)
||
: '''Some Recent Progress on Quantum Information Complexity'''
||
[https://arxiv.org/pdf/1605.04601v1.pdf Lower bound on expected communication cost of quantum Huffman coding]


[https://arxiv.org/pdf/1404.1366v4.pdf New one shot quantum protocols with application to communication complexity]
Now we prove the general LLL by the original induction proof.
{{Proof|
First, apply the chain rule. We have
:<math>\Pr\left[\bigwedge_{i=1}^n\overline{A_i}\right]=\prod_{i=1}^n\Pr\left[\overline{A_i}\mid \bigwedge_{j=1}^{i-1}\overline{A_{j}}\right]=\prod_{i=1}^n\left(1-\Pr\left[{A_i}\mid \bigwedge_{j=1}^{i-1}\overline{A_{j}}\right]\right)</math>.


[https://arxiv.org/abs/1611.08946.pdf Exponential Separation of Quantum Communication and Classical Information]
Next we prove by induction on <math>m</math> that for any set of <math>m</math> events <math>i_1,\ldots,i_m</math>,
|-
:<math>\Pr\left[A_{i_1}\mid \bigwedge_{j=2}^m\overline{A_{i_j}}\right]\le x_{i_1}</math>.
|align="center"|
The local lemma follows immediately by the above chain rule.
4:30'''pm''',  2016/11/25<br> 计算机系楼 224
|align="center"|
陈海敏
||
: Lovász local lemma and approximate counting
||
[https://arxiv.org/abs/1610.04317 Ankur Moitra's breakthrough paper on counting CNF]
|-
|align="center"|
4:30'''pm''',  2016/11/11<br> 计算机系楼 224
|align="center"|
潘笑吟
||
:Fourier analysis; Hypercontractivity; Locality-sensitive hashing (LSH); approximate nearest neighbor search (ANNS) 
||
[http://www.cims.nyu.edu/~naor/homepage%20files/lsh-new.pdf Motwani-Naor-Panigrahy's lower bound on LSH]


[http://www.cs.cmu.edu/~odonnell/papers/lsh.pdf O’Donnell-Wu-Zhou's optimal lower bound on LSH]
For <math>m=1</math>, this is obvious because
:<math>\Pr[A_{i_1}]\le x_{i_1}\prod_{(i_1,j)\in E}(1-x_j)\le x_{i_1}</math>.  


[https://arxiv.org/abs/1608.03580 a hash-based lower bound of Andoni et al.]
For general <math>m</math>, let <math>i_2,\ldots,i_k</math> be the set of vertices adjacent to  <math>i_1</math> in the dependency graph, i.e. event <math>A_{i_1}</math> is mutually independent of <math>A_{i_{k+1}},A_{i_{k+2}},\ldots, A_{i_{m}}</math>.
|-
 
|align="center"|
By conditional probability, we have
4:30'''pm''',  2016/10/28<br> 计算机系楼 223
:<math>
|align="center"|
\Pr\left[A_{i_1}\mid \bigwedge_{j=2}^m\overline{A_{i_j}}\right]
孙宇鑫
=\frac{\Pr\left[ A_i\wedge \bigwedge_{j=2}^k\overline{A_{i_j}}\mid \bigwedge_{j=k+1}^m\overline{A_{i_j}}\right]}
||
{\Pr\left[\bigwedge_{j=2}^k\overline{A_{i_j}}\mid \bigwedge_{j=k+1}^m\overline{A_{i_j}}\right]}
:MCMC sampler; Glauber dynamics; path-coupling;
</math>.
||
First, we bound the numerator. Due to that <math>A_{i_1}</math> is mutually independent of <math>A_{i_{k+1}},A_{i_{k+2}},\ldots, A_{i_{m}}</math>, we have
[http://www.cc.gatech.edu/~vigoda/MCMC_Course/survey.pdf Frieze-Vigoda survey]
:<math>
|-
\begin{align}
|-
\Pr\left[ A_{i_1}\wedge \bigwedge_{j=2}^k\overline{A_{i_j}}\mid \bigwedge_{j=k+1}^m\overline{A_{i_j}}\right]
|align="center"|
&\le\Pr\left[ A_{i_1}\mid \bigwedge_{j=k+1}^m\overline{A_{i_j}}\right]\\
4:30'''pm''',  2016/10/14<br> 计算机系楼 224
&=\Pr[A_{i_1}]\\
|align="center"|
&\le x_{i_1}\prod_{(i_1,j)\in E}(1-x_j).
宋仁杰
\end{align}
||
</math>
:Approximate Counting via Correlation Decay.
 
||
Next, we bound the denominator. Applying the chain rule, we have
[http://dimacs.rutgers.edu/~dror/pubs/ind_from_tree.pdf Weitz's paper]
:<math>
|-
\Pr\left[\bigwedge_{j=2}^k\overline{A_{i_j}}\mid \bigwedge_{j=k+1}^m\overline{A_{i_j}}\right]
|align="center"|
=\prod_{j=2}^k\Pr\left[\overline{A_{i_j}}\mid \bigwedge_{\ell=j+1}^m\overline{A_{i_\ell}}\right]
1'''pm''',  2016/9/27<br> 计算机系楼 224
</math>
|align="center"|
which by the induction hypothesis, is at least
刘明谋
:<math>
||
\prod_{j=2}^k(1-x_{i_j})=\prod_{\{i_1,i_j\}\in E}(1-x_j)
:Communication Complexity of Gap Hamming Distance.
</math>
||
where <math>E</math> is the set of edges in the dependency graph.
[http://web.cs.ucla.edu/~sherstov/pdf/hamming.pdf Sherstov's simplified proof]
 
[https://arxiv.org/pdf/1009.3460v3.pdf Chakrabarti-Regev 2010]
Altogether, we prove the induction hypothesis
|-
:<math>
|align="center"|
\Pr\left[A_{i_1}\mid \bigwedge_{j=2}^m\overline{A_{i_j}}\right]
4:30'''pm''',  2016/9/23<br> 计算机系楼 224
\le\frac{x_{i_1}\prod_{(i_1,j)\in E}(1-x_j)}{\prod_{\{i_1,i_j\}\in E}(1-x_j)}\le x_{i_1}.
|align="center"|
</math>
[http://basics.sjtu.edu.cn/~chzhang/ 张驰豪]<br>(上海交通大学 & 香港中文大学)
 
||
Due to the chain rule, it holds that
:Sparsest cut; Bourgain Theorem; Leighton-Rao algorithm.
:<math>
||
\begin{align}
Luca Trevisan's notes: [https://people.eecs.berkeley.edu/~luca/expanders2016/lecture09.pdf 1], [https://people.eecs.berkeley.edu/~luca/expanders2016/lecture10.pdf 2]
\Pr\left[\bigwedge_{i=1}^n\overline{A_i}\right]
|-
&=\prod_{i=1}^n\Pr\left[\overline{A_i}\mid \bigwedge_{j=1}^{i-1}\overline{A_{j}}\right]\\
|align="center"|
&=\prod_{i=1}^n\left(1-\Pr\left[A_i\mid \bigwedge_{j=1}^{i-1}\overline{A_{j}}\right]\right)\\
1'''pm''',  2016/9/20<br> 计算机系楼 224
&\ge\prod_{i=1}^n\left(1-x_i\right).
|align="center"|
\end{align}
[http://basics.sjtu.edu.cn/~chzhang/ 张驰豪]<br>(上海交通大学 & 香港中文大学)
</math>
||
}}
:Graph spectrum; Cheeger's Inequality; Fiedler's algorithm.
||
Luca Trevisan's notes: [https://people.eecs.berkeley.edu/~luca/expanders2016/lecture00.pdf 1], [https://people.eecs.berkeley.edu/~luca/expanders2016/lecture02.pdf 2], [https://people.eecs.berkeley.edu/~luca/expanders2016/lecture03.pdf 3], [https://people.eecs.berkeley.edu/~luca/expanders2016/lecture04.pdf 4]
|}

Latest revision as of 09:48, 3 October 2016

Given a sequence of events [math]\displaystyle{ A_1,A_2,\ldots,A_n }[/math], we use the dependency graph to describe the dependencies between these events.

Definition (dependency graph)
Let [math]\displaystyle{ A_1,A_2,\ldots,A_n }[/math] be a sequence of events. A graph [math]\displaystyle{ D=(V,E) }[/math] on the set of vertices [math]\displaystyle{ V=\{1,2,\ldots,n\} }[/math] is called a dependency graph for the events [math]\displaystyle{ A_1,\ldots,A_n }[/math] if for each [math]\displaystyle{ i }[/math], [math]\displaystyle{ 1\le i\le n }[/math], the event [math]\displaystyle{ A_i }[/math] is mutually independent of all the events [math]\displaystyle{ \{A_j\mid (i,j)\not\in E\} }[/math].

The notion of mutual independence between an event and a set of events is formally defined as follows.

Definition (mutual independence)
An event [math]\displaystyle{ A }[/math] is said to be mutually independent of events [math]\displaystyle{ B_1,B_2,\ldots, B_k }[/math], if for any disjoint [math]\displaystyle{ I^+,I^-\subseteq\{1,2,\ldots,k\} }[/math], it holds that
[math]\displaystyle{ \Pr\left[A \mid \left(\bigwedge_{i\in I^+}B_i\right) \wedge \left(\bigwedge_{i\in I^-}\overline{B_i}\right)\right]=\Pr[A] }[/math].
Example
Let [math]\displaystyle{ X_1,X_2,\ldots,X_m }[/math] be a set of mutually independent random variables. Each event [math]\displaystyle{ A_i }[/math] is a predicate defined on a number of variables among [math]\displaystyle{ X_1,X_2,\ldots,X_m }[/math]. Let [math]\displaystyle{ v(A_i) }[/math] be the unique smallest set of variables which determine [math]\displaystyle{ A_i }[/math]. The dependency graph [math]\displaystyle{ D=(V,E) }[/math] is defined by
[math]\displaystyle{ (i,j)\in E }[/math] iff [math]\displaystyle{ v(A_i)\cap v(A_j)\neq \emptyset }[/math].

The following lemma, known as the Lovász local lemma, first proved by Erdős and Lovász in 1975, is an extremely powerful tool, as it supplies a way for dealing with rare events.

Lovász Local Lemma (symmetric case)
Let [math]\displaystyle{ A_1,A_2,\ldots,A_n }[/math] be a set of events, and assume that there is a [math]\displaystyle{ p\in[0,1) }[/math] such that the followings are satisfied:
  1. for all [math]\displaystyle{ 1\le i\le n }[/math], [math]\displaystyle{ \Pr[A_i]\le p }[/math];
  2. the maximum degree of the dependency graph for the events [math]\displaystyle{ A_1,A_2,\ldots,A_n }[/math] is [math]\displaystyle{ d }[/math], and
[math]\displaystyle{ \mathrm{e}p\cdot (d+1)\le 1 }[/math].
Then
[math]\displaystyle{ \Pr\left[\bigwedge_{i=1}^n\overline{A_i}\right]\gt 0 }[/math].

We will prove a general version of the local lemma, where the events [math]\displaystyle{ A_i }[/math] are not symmetric. This generalization is due to Spencer.

Lovász Local Lemma (general case)
Let [math]\displaystyle{ D=(V,E) }[/math] be the dependency graph of events [math]\displaystyle{ A_1,A_2,\ldots,A_n }[/math]. Suppose there exist real numbers [math]\displaystyle{ x_1,x_2,\ldots, x_n }[/math] such that [math]\displaystyle{ 0\le x_i\lt 1 }[/math] and for all [math]\displaystyle{ 1\le i\le n }[/math],
[math]\displaystyle{ \Pr[A_i]\le x_i\prod_{(i,j)\in E}(1-x_j) }[/math].
Then
[math]\displaystyle{ \Pr\left[\bigwedge_{i=1}^n\overline{A_i}\right]\ge\prod_{i=1}^n(1-x_i) }[/math].

To see that the general LLL implies symmetric LLL, we set [math]\displaystyle{ x_i=\frac{1}{d+1} }[/math] for all [math]\displaystyle{ i=1,2,\ldots,n }[/math]. Then we have [math]\displaystyle{ \left(1-\frac{1}{d+1}\right)^d\gt \frac{1}{\mathrm{e}} }[/math].

Assume the condition in the symmetric LLL:

  1. for all [math]\displaystyle{ 1\le i\le n }[/math], [math]\displaystyle{ \Pr[A_i]\le p }[/math];
  2. [math]\displaystyle{ \mathrm{e}p\cdot(d+1)\le 1 }[/math];

then it is easy to verify that for all [math]\displaystyle{ 1\le i\le n }[/math],

[math]\displaystyle{ \Pr[A_i]\le p\le\frac{1}{e(d+1)}\lt \frac{1}{d+1}\left(1-\frac{1}{d+1}\right)^d\le x_i\prod_{(i,j)\in E}(1-x_j) }[/math].

Due to the general LLL, we have

[math]\displaystyle{ \Pr\left[\bigwedge_{i=1}^n\overline{A_i}\right]\ge\prod_{i=1}^n(1-x_i)=\left(1-\frac{1}{d+1}\right)^n\gt 0 }[/math].

This proves the symmetric LLL.

Now we prove the general LLL by the original induction proof.

Proof.

First, apply the chain rule. We have

[math]\displaystyle{ \Pr\left[\bigwedge_{i=1}^n\overline{A_i}\right]=\prod_{i=1}^n\Pr\left[\overline{A_i}\mid \bigwedge_{j=1}^{i-1}\overline{A_{j}}\right]=\prod_{i=1}^n\left(1-\Pr\left[{A_i}\mid \bigwedge_{j=1}^{i-1}\overline{A_{j}}\right]\right) }[/math].

Next we prove by induction on [math]\displaystyle{ m }[/math] that for any set of [math]\displaystyle{ m }[/math] events [math]\displaystyle{ i_1,\ldots,i_m }[/math],

[math]\displaystyle{ \Pr\left[A_{i_1}\mid \bigwedge_{j=2}^m\overline{A_{i_j}}\right]\le x_{i_1} }[/math].

The local lemma follows immediately by the above chain rule.

For [math]\displaystyle{ m=1 }[/math], this is obvious because

[math]\displaystyle{ \Pr[A_{i_1}]\le x_{i_1}\prod_{(i_1,j)\in E}(1-x_j)\le x_{i_1} }[/math].

For general [math]\displaystyle{ m }[/math], let [math]\displaystyle{ i_2,\ldots,i_k }[/math] be the set of vertices adjacent to [math]\displaystyle{ i_1 }[/math] in the dependency graph, i.e. event [math]\displaystyle{ A_{i_1} }[/math] is mutually independent of [math]\displaystyle{ A_{i_{k+1}},A_{i_{k+2}},\ldots, A_{i_{m}} }[/math].

By conditional probability, we have

[math]\displaystyle{ \Pr\left[A_{i_1}\mid \bigwedge_{j=2}^m\overline{A_{i_j}}\right] =\frac{\Pr\left[ A_i\wedge \bigwedge_{j=2}^k\overline{A_{i_j}}\mid \bigwedge_{j=k+1}^m\overline{A_{i_j}}\right]} {\Pr\left[\bigwedge_{j=2}^k\overline{A_{i_j}}\mid \bigwedge_{j=k+1}^m\overline{A_{i_j}}\right]} }[/math].

First, we bound the numerator. Due to that [math]\displaystyle{ A_{i_1} }[/math] is mutually independent of [math]\displaystyle{ A_{i_{k+1}},A_{i_{k+2}},\ldots, A_{i_{m}} }[/math], we have

[math]\displaystyle{ \begin{align} \Pr\left[ A_{i_1}\wedge \bigwedge_{j=2}^k\overline{A_{i_j}}\mid \bigwedge_{j=k+1}^m\overline{A_{i_j}}\right] &\le\Pr\left[ A_{i_1}\mid \bigwedge_{j=k+1}^m\overline{A_{i_j}}\right]\\ &=\Pr[A_{i_1}]\\ &\le x_{i_1}\prod_{(i_1,j)\in E}(1-x_j). \end{align} }[/math]

Next, we bound the denominator. Applying the chain rule, we have

[math]\displaystyle{ \Pr\left[\bigwedge_{j=2}^k\overline{A_{i_j}}\mid \bigwedge_{j=k+1}^m\overline{A_{i_j}}\right] =\prod_{j=2}^k\Pr\left[\overline{A_{i_j}}\mid \bigwedge_{\ell=j+1}^m\overline{A_{i_\ell}}\right] }[/math]

which by the induction hypothesis, is at least

[math]\displaystyle{ \prod_{j=2}^k(1-x_{i_j})=\prod_{\{i_1,i_j\}\in E}(1-x_j) }[/math]

where [math]\displaystyle{ E }[/math] is the set of edges in the dependency graph.

Altogether, we prove the induction hypothesis

[math]\displaystyle{ \Pr\left[A_{i_1}\mid \bigwedge_{j=2}^m\overline{A_{i_j}}\right] \le\frac{x_{i_1}\prod_{(i_1,j)\in E}(1-x_j)}{\prod_{\{i_1,i_j\}\in E}(1-x_j)}\le x_{i_1}. }[/math]

Due to the chain rule, it holds that

[math]\displaystyle{ \begin{align} \Pr\left[\bigwedge_{i=1}^n\overline{A_i}\right] &=\prod_{i=1}^n\Pr\left[\overline{A_i}\mid \bigwedge_{j=1}^{i-1}\overline{A_{j}}\right]\\ &=\prod_{i=1}^n\left(1-\Pr\left[A_i\mid \bigwedge_{j=1}^{i-1}\overline{A_{j}}\right]\right)\\ &\ge\prod_{i=1}^n\left(1-x_i\right). \end{align} }[/math]
[math]\displaystyle{ \square }[/math]