组合数学 (Fall 2011)/Pólya's theory of counting and 组合数学 (Fall 2011)/Problem set 2: Difference between pages

From TCS Wiki
(Difference between pages)
Jump to navigation Jump to search
imported>Etone
 
imported>Etone
No edit summary
 
Line 1: Line 1:
== Groups ==
*<font color="red" size=5>题目要有解题过程。</font>
A group <math>(G,\cdot)</math> is set <math>G</math> along with a binary operator <math>\cdot</math> which satisfies the following axioms:
* ''closure'': <math>\forall g,h\in G, g\cdot h \in G</math>;
* ''associativity'': <math>\forall f,g,h\in G, f\cdot(g\cdot h)=(f\cdot g)\cdot h</math>;
* ''identity'': there exists a special element <math>e\in G</math>, called the '''identity''', such that <math>e\cdot g=g</math> for any <math>g\in G</math>;
* ''inverse'': <math>\forall g\in G</math>, there exists an <math>h\in G</math> such that <math>g\cdot h=e</math>, and we denote that <math>h=g^{-1}</math>.


=== Permutation groups===
== Problem 0 ==
你的姓名、年级、学号。


==== Cycle decomposition ====
== Problem 1 ==
令<math>f_k(n)</math>为'''没有'''长为<math>k</math>的圈(cycle)的<math>[n]</math>的排列(permutation)的数量。
#求<math>f_k(n)</math>。(可以不是闭合形式)
#对常数<math>k</math>,求<math>\lim_{n\rightarrow\infty}\frac{f_k(n)}{n!}</math>。(闭合形式)


=== Group action ===
== Problem 2==
{{Theorem|Definition (group action)|
有三种颜色的宝石,串成20块宝石的项链,旋转(rotation)和镜像(reflection)都算等价。给出对于这种项链计数的pattern inventory。给出5种具体的<math>(n_1,n_2,n_3)</math>,以及第 <math>i</math> 种宝石刚好有 <math>n_i</math> 块 (<math>i=1,2,3</math>) 的项链的计数。
:A '''group action''' of a group <math>G</math> on a set <math>X</math> is a binary operator:
::<math>\circ:G\times X\rightarrow X</math>
:satisfying:
:* Associativity: <math>(g\cdot h)\circ x=g\circ (h\circ x)</math> for all <math>g,h\in G</math> and <math>x\in X</math>;
:* Identity: <math>e\circ x=x</math> for all <math>x\in X</math>.
}}


==== Example: coloring a necklace ====
写一篇短文(字数不限),以论文的格式给出这道题目的解决过程。
Suppose a necklace is made of <math>n</math> beads, each with one of the <math>m</math> colors. Formally, a necklace is an assignment <math>x:[n]\rightarrow[m]</math> of <math>m</math> colors to <math>n</math> positions. Let <math>X=\{x:[n]\rightarrow[m]\}</math> be the set of all such assignments.


For example, when <math>n=4</math> and <math>m=2</math>, <math>X</math> contains all possible 2-colorings (say red and blue) of 4 positions.
(可以编程解决,也可以使用一些符号计算工具,例如mathematica或linux下的MAXIMA。不建议手算。)
:<math>X=\{{\color{blue}bbbb}, {\color{blue}bbb}{\color{red}r}, {\color{blue}bb}{\color{red}r}{\color{blue}b}, {\color{blue}bb}{\color{red}rr}, {\color{blue}b}{\color{red}r}{\color{blue}b}{\color{red}r}, {\color{blue}b}{\color{red}rr}{\color{blue}b}, {\color{blue}b}{\color{red}rrr},  {\color{red}r}{\color{blue}bbb}, {\color{red}r}{\color{blue}bb}{\color{red}r}, {\color{red}r}{\color{blue}b}{\color{red}r}{\color{blue}b}, {\color{red}r}{\color{blue}b}{\color{red}rr}, {\color{red}rr}{\color{blue}bb}, {\color{red}rr}{\color{blue}b}{\color{red}r}, {\color{red}rrr}{\color{blue}b}, {\color{red}rrrr}\}</math>


We consider two kinds of symmetric operations on necklaces:
如果有代码,也要提交源代码。
* Rotation: the corresponding group is the cyclic group <math>C_n</math>.
* Rotation and reflection: the corresponding group is the dihedral group <math>D_n</math>.


Mathematically, these operations on necklaces are described as group actions on <math>X</math>. Recall that each member <math>x\in X</math> is an <math>m</math>-coloring <math>x:[n]\rightarrow[m]</math> of <math>n</math> positions. Suppose the permutation group is <math>G</math>, for any <math>\pi\in G</math> and any <math>x\in X</math>, the group action <math>\pi\circ x</math> is naturally defined as such:
== Open project (可选) ==
:<math>(\pi\circ x)(i)=x(\pi(i))</math>.
* 编一个程序,输入:<math>n,m,n_1,n_2,\ldots,n_{m}</math> 且有 <math>n_1+n_2+\cdots+n_m=n</math>.
输出:<math>n</math> 块宝石组成的项链,旋转(rotation)和镜像(reflection)都算等价,宝石有 <math>m</math> 种,第 <math>i</math> 种宝石刚好有 <math>n_i</math> 种,这样的项链的数量。


== Burnside's Lemma ==
* Polya计数不仅仅用于数环状结构的对称染色。自己举一个非环状结构(例如某有机化合物),指定有限个颜色,给出pattern inventory。
 
=== Orbits ===
Let <math>G</math> be a permutation group acting on a set <math>X</math>. Let <math>\pi\in G, x\in X</math>.
* The '''invariant set''' of <math>\pi</math>:
::<math>X_\pi=\{x\in X\mid \pi\circ x=x\}</math>.
* The '''stabilizer''' of <math>x</math>:
::<math>G_x=\{\pi\in G\mid \pi\circ x=x\}</math>.
* The '''orbit''' of <math>x</math> under action of <math>G</math>:
::<math>Gx=\{\pi\circ x\mid \pi\in G\}</math>.
 
For any <math>x,y,z\in X</math>, the followings can be verified for orbits
* ''reflexivity'': <math>x\in Gx</math> since <math>e\circ x=x</math>;
* ''symmetric'':  if <math>y\in Gx</math> then there is a <math>\pi\in G</math> such that <math>\pi\circ x=y</math>, thus <math>\pi^{-1}\circ y=\pi^{-1}\circ\pi =(\pi^{-1}\cdot \pi)\circ x=e\circ x=x</math>, hence <math>x\in G_y</math>;
* ''transitivity'': if <math>y\in Gx</math> and <math>z\in Gy</math>, then there exist <math>\pi,\sigma\in G</math> such that <math>\pi\circ x=y</math> and <math>\sigma\circ y=z</math>, thus <math>(\sigma\cdot \pi)\circ x=\sigma\circ(\pi\circ x)=\sigma\circ y=z</math>, hence <math>z\in Gx</math>.
 
Therefore, <math>x\in Gy</math> defines an equivalent relation between <math>x</math> and <math>y</math>, and orbits partition the set <math>X</math>.
 
==== Example: coloring a necklace ====
Back to the example of coloring necklaces.
 
<math>X</math> contains all possible 2-colorings (say red and blue) of 4 positions.
:<math>X=\{{\color{blue}bbbb}, {\color{blue}bbb}{\color{red}r}, {\color{blue}bb}{\color{red}r}{\color{blue}b}, {\color{blue}bb}{\color{red}rr}, {\color{blue}b}{\color{red}r}{\color{blue}bb}, {\color{blue}b}{\color{red}r}{\color{blue}b}{\color{red}r}, {\color{blue}b}{\color{red}rr}{\color{blue}b}, {\color{blue}b}{\color{red}rrr},  {\color{red}r}{\color{blue}bbb}, {\color{red}r}{\color{blue}bb}{\color{red}r}, {\color{red}r}{\color{blue}b}{\color{red}r}{\color{blue}b}, {\color{red}r}{\color{blue}b}{\color{red}rr}, {\color{red}rr}{\color{blue}bb}, {\color{red}rr}{\color{blue}b}{\color{red}r}, {\color{red}rrr}{\color{blue}b}, {\color{red}rrrr}\}</math>
 
We consider the rotations of necklaces. The cyclic group <math>C_4</math> acting on <math>X</math> partitions the <math>X</math> into the following equivalent classes:
:<math>\begin{align}
&\{{\color{blue}bbbb}\},\\
&\{ {\color{blue}bbb}{\color{red}r}, {\color{blue}bb}{\color{red}r}{\color{blue}b}, {\color{blue}b}{\color{red}r}{\color{blue}bb},  {\color{red}r}{\color{blue}bbb}\},\\
&\{ {\color{blue}bb}{\color{red}rr}, {\color{blue}b}{\color{red}rr}{\color{blue}b}, {\color{red}r}{\color{blue}bb}{\color{red}r}, {\color{red}rr}{\color{blue}bb}, \},\\
&\{ {\color{blue}b}{\color{red}r}{\color{blue}b}{\color{red}r}, {\color{red}r}{\color{blue}b}{\color{red}r}{\color{blue}b}\},\\
&\{ {\color{blue}b}{\color{red}rrr}, {\color{red}r}{\color{blue}b}{\color{red}rr}, {\color{red}rr}{\color{blue}b}{\color{red}r}, {\color{red}rrr}{\color{blue}b}\},\\
&\{ {\color{red}rrrr}\}
\end{align}
</math>
 
=== Counting orbits===
 
{{Theorem|Lemma|
:Let <math>G</math> be a permutation group acting on a set <math>X</math>. For any <math>x\in X</math>,
::<math>|G_x||Gx|=|G|\,</math>.
}}
{{Proof|
Recall that the orbit <math>Gx=\{\pi\circ x\mid \pi\in G\}</math>. Suppose that <math>Gx=\{x_1,x_2,\ldots,x_t\}</math>. Then there exist a set <math>P=\{\pi_1,\pi_2,\ldots,\pi_t\}</math> of permutations such that <math>\pi_i\circ x=x_i\,</math> for <math>i=1,2,\ldots,t</math>. We construct a bijection between <math>G</math> and <math>P\times G_x</math>, which will prove the lemma.
 
For any <math>\pi\in G</math>, it holds that <math>\pi\circ x=x_i</math> for some <math>x_i</math>, and since <math>\pi_i\circ x=x_i</math>, we have
<math>\pi_i\circ x=\pi\circ x</math>, hence
:<math>(\pi_i^{-1}\cdot\pi)\circ x=\pi_i^{-1}\circ(\pi\circ x)=\pi_i^{-1}\circ(\pi_i\circ x)=(\pi_i^{-1}\cdot\pi_i)\circ x=e\circ x=x</math>.
Denote that <math>\sigma=\pi_i^{-1}\cdot \pi</math>. Then
*<math>\pi_i\cdot\sigma=\pi_i\cdot(\pi_i^{-1}\cdot\pi)=\pi</math>, and
*<math>\sigma\circ x=(\pi_i^{-1}\cdot\pi)\circ x=x</math>, which implies that <math>\sigma\in G_x</math>.
Therefore, each <math>\pi\in G</math> corresponds to a unique pair <math>(\pi_i,\sigma)\in P\times G_x</math>. We have a 1-1 mapping from <math>G</math> to <math>P\times G_x</math>.
 
For every <math>\pi_i\in P</math> and every <math>\sigma\in G_x</math>, <math>\pi=\pi_i\cdot\sigma\in G</math>. We show that this is a 1-1 mapping. Suppose that <math>\pi_i\cdot\sigma=\pi_j\cdot\tau</math> for some <math>\pi_i,\pi_j\in P</math> and <math>\sigma,\tau\in G_x</math>. Then <math>(\pi_i\cdot\sigma)\circ x=\pi_i\circ(\sigma\circ x)=\pi_i\circ x=x_i</math> and <math>(\pi_j\cdot \tau)\circ x=\pi_j\circ(\tau\circ x)=\pi_j\circ x=x_j</math>, which implies <math>x_i=x_j</math> and correspondingly <math>\pi_i=\pi_j</math>. Since <math>\pi_i\cdot\sigma=\pi_j\cdot\tau</math>, <math>\sigma=\tau</math>. Therefore, we show that the mapping is 1-1.
 
In conclusion, there exists a bijection between <math>P\times G_x</math> and <math>G</math>. As a consequence, <math>|Gx||G_x|=|P||G_x|=|P\times G_x|=|G|</math>.
}}
 
{{Theorem|Burnside's Lemma|
:Let <math>G</math> be a permutation group acting on a set <math>X</math>. The number of orbits, denoted <math>|X/G|</math>, is
::<math>|X/G|=\frac{1}{|G|}\sum_{\pi\in G}|X_{\pi}|.</math>
}}
{{Proof|
Let
:<math>A(\pi,x)=\begin{cases}1 & \pi\circ x=x,\\ 0 & \text{otherwise.}\end{cases}</math>
Basically <math>A(\pi,x)</math> indicates whether <math>x</math> is invariant under action of <math>\pi</math>. We can think of <math>A</math> as a matrix indexed by <math>G\times X</math>. An important observation is that the row sums and column sums of <math>A</math> are <math>|X_\pi|</math> and <math>|G_x|</math> respectively, namely,
:<math>|X_\pi|=\sum_{x\in X}A(\pi,x)</math> and <math>|G_x|=\sum_{\pi\in G}A(\pi,x)</math>.
Then a double counting gives that
:<math>\sum_{\pi\in G}|X_\pi|=\sum_{\pi\in G}\sum_{x\in X}A(\pi,x)=\sum_{x\in X}\sum_{\pi\in G}A(\pi,x)=\sum_{x\in X}|G_x|</math>.
 
Due to the above lemma, <math>|G_x|=\frac{|G|}{|Gx|}</math>, thus
:<math>\sum_{x\in X}|G_x|=\sum_{x\in X}\frac{|G|}{|Gx|}=|G|\sum_{x\in X}\frac{1}{|Gx|}</math>.
We may enumerate the <math>x\in X</math> in the sum by first enumerating the orbits and then the elements in each orbit. Denote the orbits by <math>X_1,X_2,\ldots,X_{|X/G|}</math>. They forms a partition of <math>X</math>, and for any <math>X_i</math> and every <math>x\in X_i</math>, <math>X_i=Gx</math>. Thus,
:<math>|G|\sum_{x\in X}\frac{1}{|Gx|}=|G|\sum_{i=1}^{|X/G|}\sum_{x\in X_i}\frac{1}{|Gx|}=|G|\sum_{i=1}^{|X/G|}\sum_{x\in X_i}\frac{1}{|X_i|}=|G|\sum_{i=1}^{|X/G|}1=|G|{|X/G|}</math>.
Combining everything together
:<math>\sum_{\pi\in G}|X_\pi|=\sum_{x\in X}|G_x|=|G|\sum_{x\in X}\frac{1}{|Gx|}=|G|{|X/G|}</math>,
which gives us that the number of orbits is
:<math>{|X/G|}=\frac{1}{|G|}\sum_{\pi\in G}|X_\pi|</math>.
}}
 
==Pólya's Theory of Counting ==
=== The cycle index ===
Suppose we want to count the number of ways to color <math>n</math> objects using up to <math>m</math> colors, discounting symmetries on the objects described by a group <math>G</math>. If a coloring <math>x:[n]\rightarrow[m]</math> is invariant under the action of a permutation <math>\pi</math> under the action of a permutation <math>\pi\in G</math>, then every position in the same cycle of <math>\pi</math> must have the same color. Therefore, if <math>\pi</math> is decomposed to <math>k</math> disjoint cycles, the number of colorings invariant under the action of <math>\pi</math> is <math>|X_\pi|=m^k</math>.
 
We define the cycle index of a permutation group <math>G</math>.
For a permutation <math>\pi\in G</math> of <math>[n]</math>, if <math>\pi</math> is a product of <math>k</math> cycles, and the <math>i</math>th cycle has length <math>\ell_i</math>, let
:<math>M_\pi(x_1,x_2,\ldots,x_n)=\prod_{i=1}^k x_{\ell_i}</math>.
The '''cycle index''' of <math>G</math> is defined by
:<math>P_G(x_1,x_2,\ldots,x_n)=\frac{1}{|G|}\sum_{\pi\in G}M_\pi(x_1,x_2,\ldots,x_n)</math>.
 
Due to Burnside's lemma, the number of equivalent classes of <math>m</math>-colorings of <math>n</math> objects, discounting the symmetries described by permutation group <math>G</math>, is given by
:<math>P_G(\underbrace{m,m,\ldots,m}_{n})</math>
 
=== Pólya's enumeration formula ===
For any tuple <math>\mathbf{v}=(n_1,n_2,\ldots,n_m)</math> of nonnegative integers satisfying that <math>n_1+n_2+\cdots +n_m=n</math>, let <math>a_{\mathbf{v}}</math> represent the number of nonequivalent (with respect to a permutation group <math>G</math>) <math>m</math>-colorings of the <math>n</math> objects, where the <math>i</math>th color occurs precisely <math>n_i</math> times. The '''pattern inventory''' is the (multivariate) generating function for the sequence <math>a_{\mathbf{v}}</math>, defined as
:<math>F_G(y_1,y_2,\ldots,y_m)=\sum_{\mathbf{v}}a_{\mathbf{v}}y_1^{n_1}y_2^{n_2}\cdots y_m^{n_m}</math>,
where the sum runs over all <math>\mathbf{v}=(n_1,n_2,\ldots,n_m)</math> satisfying that <math>n_1+n_2+\cdots +n_m=n</math> and <math>n_i\ge 0, 1\le i\le m</math>.
 
{{Theorem|Theorem (Pólya's enumeration formula)|
:Let <math>G</math> be a permutation group. The pattern inventory for the nonequivalent <math>m</math>-colorings of <math>n</math> objects under the action of <math>G</math> is:
::<math>F_G(y_1,y_2,\ldots,y_m)=P_G\left(\sum_{i=1}^m y_i, \sum_{i=1}^m y_i^2,\ldots, \sum_{i=1}^m y_i^n\right)</math>.
}}
 
=== de Bruijn's generalization===

Latest revision as of 01:43, 29 September 2011

  • 题目要有解题过程。

Problem 0

你的姓名、年级、学号。

Problem 1

[math]\displaystyle{ f_k(n) }[/math]没有长为[math]\displaystyle{ k }[/math]的圈(cycle)的[math]\displaystyle{ [n] }[/math]的排列(permutation)的数量。

  1. [math]\displaystyle{ f_k(n) }[/math]。(可以不是闭合形式)
  2. 对常数[math]\displaystyle{ k }[/math],求[math]\displaystyle{ \lim_{n\rightarrow\infty}\frac{f_k(n)}{n!} }[/math]。(闭合形式)

Problem 2

有三种颜色的宝石,串成20块宝石的项链,旋转(rotation)和镜像(reflection)都算等价。给出对于这种项链计数的pattern inventory。给出5种具体的[math]\displaystyle{ (n_1,n_2,n_3) }[/math],以及第 [math]\displaystyle{ i }[/math] 种宝石刚好有 [math]\displaystyle{ n_i }[/math] 块 ([math]\displaystyle{ i=1,2,3 }[/math]) 的项链的计数。

写一篇短文(字数不限),以论文的格式给出这道题目的解决过程。

(可以编程解决,也可以使用一些符号计算工具,例如mathematica或linux下的MAXIMA。不建议手算。)

如果有代码,也要提交源代码。

Open project (可选)

  • 编一个程序,输入:[math]\displaystyle{ n,m,n_1,n_2,\ldots,n_{m} }[/math] 且有 [math]\displaystyle{ n_1+n_2+\cdots+n_m=n }[/math].

输出:[math]\displaystyle{ n }[/math] 块宝石组成的项链,旋转(rotation)和镜像(reflection)都算等价,宝石有 [math]\displaystyle{ m }[/math] 种,第 [math]\displaystyle{ i }[/math] 种宝石刚好有 [math]\displaystyle{ n_i }[/math] 种,这样的项链的数量。

  • Polya计数不仅仅用于数环状结构的对称染色。自己举一个非环状结构(例如某有机化合物),指定有限个颜色,给出pattern inventory。