随机算法 (Fall 2011)/Expander Mixing Lemma

From TCS Wiki
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Given a [math]\displaystyle{ d }[/math]-regular graph [math]\displaystyle{ G }[/math] on [math]\displaystyle{ n }[/math] vertices with the spectrum [math]\displaystyle{ d=\lambda_1\ge\lambda_2\ge\cdots\ge\lambda_n }[/math], we denote [math]\displaystyle{ \lambda_\max = \max(|\lambda_2|,|\lambda_n|)\, }[/math], which is the largest absolute value of an eigenvalue other than [math]\displaystyle{ \lambda_1=d }[/math]. Sometimes, the value of [math]\displaystyle{ (d-\lambda_\max) }[/math] is also referred as the spectral gap, because it is the gap between the largest and the second largest absolute values of eigenvalues.

The next lemma is the so-called expander mixing lemma, which states a fundamental fact about expander graphs.

Lemma (expander mixing lemma)
Let [math]\displaystyle{ G }[/math] be a [math]\displaystyle{ d }[/math]-regular graph with [math]\displaystyle{ n }[/math] vertices. Then for all [math]\displaystyle{ S, T \subseteq V }[/math],
[math]\displaystyle{ \left||E(S,T)|-\frac{d|S||T|}{n}\right|\le\lambda_\max\sqrt{|S||T|} }[/math]

The left-hand side measures the deviation between two quantities: one is [math]\displaystyle{ |E(S,T)| }[/math], the number of edges between the two sets [math]\displaystyle{ S }[/math] and [math]\displaystyle{ T }[/math]; the other is the expected number of edges between [math]\displaystyle{ S }[/math] and [math]\displaystyle{ T }[/math] in a random graph of edge density [math]\displaystyle{ d/n }[/math], namely [math]\displaystyle{ d|S||T|/n }[/math]. A small [math]\displaystyle{ \lambda_\max }[/math] (or large spectral gap) implies that this deviation (or discrepancy as it is sometimes called) is small, so the graph looks random everywhere although it is deterministic.

Proof.

Assume that [math]\displaystyle{ A }[/math] is the adjacency matrix of [math]\displaystyle{ G }[/math] and [math]\displaystyle{ v_1,v_2,\ldots,v_n }[/math] are the orthogonal eigen basis corresponding to [math]\displaystyle{ \lambda_1\ge\lambda_2\ge\cdots\ge\lambda_n }[/math].

Let [math]\displaystyle{ \chi_S }[/math] and [math]\displaystyle{ \chi_T }[/math] be characteristic vectors of vertex sets [math]\displaystyle{ S }[/math] and [math]\displaystyle{ T }[/math], i.e.

[math]\displaystyle{ \chi_S(i)=\begin{cases} 1 & \text{if }i\in S,\\ 0 & \text{otherwise.} \end{cases} }[/math]

Then it is easy to verify that

[math]\displaystyle{ |E(S,T)|=\sum_{i\in S}\sum_{j\in T}A(i,j)=\sum_{i,j}\chi_S(i)A(i,j)\chi_T(j)=\chi^T_SA\chi_T }[/math].

Expand [math]\displaystyle{ \chi_S }[/math] and [math]\displaystyle{ \chi_T }[/math] in orthogonal basis of eigen vectors [math]\displaystyle{ v_1,v_2,\ldots,v_n }[/math] as [math]\displaystyle{ \chi_S=\sum_{i=1}^n\alpha_iv_i }[/math] and [math]\displaystyle{ \chi_T=\sum_{i=1}^n\beta_iv_i }[/math].

[math]\displaystyle{ |E(S,T)|=\chi^T_SA\chi_T=\left(\sum_{i=1}^n\alpha_iv_i\right)A\left(\sum_{i=1}^n\beta_iv_i\right)=\left(\sum_{i=1}^n\alpha_iv_i\right)\left(\sum_{i=1}^n\lambda_i\beta_iv_i\right)=\sum_{i=1}^n\lambda_i\alpha_i\beta_i, }[/math]

where the last equation is due to the orthogonality of [math]\displaystyle{ v_1,\ldots,v_n }[/math].

Recall that [math]\displaystyle{ \lambda_1=d }[/math] and [math]\displaystyle{ v_1=\frac{\boldsymbol{1}}{\sqrt{n}}=\left(1/\sqrt{n},\ldots,1/\sqrt{n}\right) }[/math]. We can conclude that [math]\displaystyle{ \alpha_1=\langle\chi_S,\frac{\boldsymbol{1}}{\sqrt{n}}\rangle=\frac{|S|}{\sqrt{n}} }[/math] and [math]\displaystyle{ \beta_1=\langle\chi_T,\frac{\boldsymbol{1}}{\sqrt{n}}\rangle=\frac{|T|}{\sqrt{n}} }[/math], where [math]\displaystyle{ \langle\cdot,\cdot\rangle }[/math] stands for the inner-product. Therefore,

[math]\displaystyle{ |E(S,T)|=\sum_{i=1}^n\lambda_i\alpha_i\beta_i=d\frac{|S||T|}{n}+\sum_{i=2}^n\lambda_i\alpha_i\beta_i. }[/math]

By the definition of [math]\displaystyle{ \lambda_\max }[/math],

[math]\displaystyle{ \left||E(S,T)|-d\frac{|S||T|}{n}\right|=\left|\sum_{i=2}^n\lambda_i\alpha_i\beta_i\right|\le\sum_{i=2}^n\left|\lambda_i\alpha_i\beta_i\right|\le\lambda_\max\sum_{i=2}^n\left|\alpha_i||\beta_i\right|. }[/math]

Due to Cauchy-Schwartz inequality,

[math]\displaystyle{ |\alpha_1||\beta_1|+|\alpha_2||\beta_2|+\cdots+|\alpha_n||\beta_n|\le\sqrt{\alpha_1^2+\alpha_2^2+\cdots+\alpha_n^2}\sqrt{\beta_1^2+\beta_2^2+\cdots+\beta_n^2}. }[/math]

We can treat [math]\displaystyle{ \alpha }[/math] and [math]\displaystyle{ \beta }[/math] as two vectors, and conclude that

[math]\displaystyle{ \left||E(S,T)|-d\frac{|S||T|}{n}\right|\le\lambda_\max\|\alpha\|_2\|\beta\|_2=\lambda_\max\|\chi_S\|_2\|\chi_T\|_2=\lambda_\max\sqrt{|S||T|}. }[/math]
[math]\displaystyle{ \square }[/math]