随机算法 (Fall 2011)/Problem set 4

From TCS Wiki
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Problem 1

Let [math]\displaystyle{ p }[/math] and [math]\displaystyle{ q }[/math] be two probability distributions over [math]\displaystyle{ \Omega }[/math]. Give an explicit construction of a coupling [math]\displaystyle{ \mu }[/math] of [math]\displaystyle{ p }[/math] and [math]\displaystyle{ q }[/math] such that

[math]\displaystyle{ \Pr_{(X,Y)\sim\mu}[X\neq Y]=\|p-q\|_{TV} }[/math].

Problem 2

Consider the Markov chain of graph coloring

Markov Chain for Graph Coloring
Start with a proper coloring of [math]\displaystyle{ G(V,E) }[/math]. At each step:
  1. Pick a vertex [math]\displaystyle{ v\in V }[/math] and a color [math]\displaystyle{ c\in[q] }[/math] uniformly at random.
  2. Change the color of [math]\displaystyle{ v }[/math] to [math]\displaystyle{ c }[/math] if the resulting coloring is proper; do nothing if otherwise.

Show that the Markov chain is:

  1. aperiodic;
  2. irreducible if [math]\displaystyle{ q\ge \Delta+2 }[/math];
  3. with uniform stationary distribution.

Problem 3

Consider the following random walk on hypercube:

Yet another random Walk on Hypercube
At each step, for the current state [math]\displaystyle{ x\in\{0,1\}^n }[/math]:
  1. pick an [math]\displaystyle{ i\in\{0,1,2,\ldots,n\} }[/math] uniformly at random;
  2. flip [math]\displaystyle{ x_i }[/math] (let [math]\displaystyle{ x_i=1-x_i }[/math]) if [math]\displaystyle{ i\neq 0 }[/math].
  • Show that the random walk is ergodic.
  • Give the stationary distribution of the random walk.
  • Analyze the mixing time of the random walk by coupling.

Problem 4

Consider the following random walk over all subsets [math]\displaystyle{ S\in{[n]\choose k} }[/math] for some [math]\displaystyle{ k\le \frac{n}{2} }[/math]:

Random walk over [math]\displaystyle{ k }[/math]-subsets
At each step, for the current state [math]\displaystyle{ S\in{[n]\choose k} }[/math]:
  1. with probability [math]\displaystyle{ p }[/math], do nothing;
  2. else pick an [math]\displaystyle{ x\in S }[/math] and a [math]\displaystyle{ y\in[n]\setminus S }[/math] independently and uniformly at random, and change the current set to be [math]\displaystyle{ S\setminus\{x\}\cup\{y\} }[/math].

You are allowed to choose a self-loop probability [math]\displaystyle{ p }[/math] for your convenience.

  • Show that the random walk is ergodic
  • Give the stationary distribution of the random walk.
  • Prove that the mixing time is [math]\displaystyle{ O(n\log k) }[/math].