随机算法 (Fall 2011)/Random Walk on Expander Graph

From TCS Wiki
Revision as of 06:03, 19 July 2011 by imported>WikiSysop (Created page with 'Given a <math>d</math>-regular graph <math>G</math> on <math>n</math> vertices with the spectrum <math>d=\lambda_1\ge\lambda_2\ge\cdots\ge\lambda_n</math>, we denote <math>\lambd…')
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Given a [math]\displaystyle{ d }[/math]-regular graph [math]\displaystyle{ G }[/math] on [math]\displaystyle{ n }[/math] vertices with the spectrum [math]\displaystyle{ d=\lambda_1\ge\lambda_2\ge\cdots\ge\lambda_n }[/math], we denote [math]\displaystyle{ \lambda_\max = \max(|\lambda_2|,|\lambda_n|)\, }[/math], which is the largest absolute value of eigenvalues except [math]\displaystyle{ \lambda_1=d }[/math].

Let [math]\displaystyle{ A }[/math] be the adjacency matrix of [math]\displaystyle{ G }[/math] and let [math]\displaystyle{ P=\frac{1}{d}A }[/math]. We know that [math]\displaystyle{ P }[/math] defines a transition matrix of a random walk on [math]\displaystyle{ G }[/math], such that

[math]\displaystyle{ P(u,v)=\begin{cases} \frac{1}{d} & u\sim v,\\ 0 & u\not\sim v. \end{cases} }[/math]

Let [math]\displaystyle{ \rho_1\ge\rho_2\ge\cdots\ge\rho_n }[/math] be the spectrum of [math]\displaystyle{ P }[/math]. Since [math]\displaystyle{ P=\frac{1}{d}A }[/math], it is obvious that

[math]\displaystyle{ \rho_i=\frac{\lambda_i}{d} }[/math].

Similarly, let [math]\displaystyle{ \rho_\max= \max(|\rho_2|,|\rho_n|)\, }[/math].

Lemma
Let [math]\displaystyle{ \pi=(\frac{1}{n},\ldots,\frac{1}{n}) }[/math] be the uniform distribution. For any stochastic vector [math]\displaystyle{ q }[/math],
[math]\displaystyle{ \|qP-\pi\|_2\le\rho_\max }[/math].
Proof.
Since [math]\displaystyle{ G }[/math] is [math]\displaystyle{ d }[/math]-regular, the uniform distribution [math]\displaystyle{ \pi }[/math] is stationary for [math]\displaystyle{ P }[/math], i.e. [math]\displaystyle{ \pi P=\pi }[/math]. Then
[math]\displaystyle{ \|qP-\pi\|_2=\|qP-\pi P\|_2=\|(q-\pi)P\|_2 }[/math]

and because [math]\displaystyle{ (q-\pi)\cdot\mathbf{1}=0 }[/math], i.e. [math]\displaystyle{ (q-\pi) }[/math] is orthogonal to [math]\displaystyle{ \mathbf{1} }[/math], its [math]\displaystyle{ \ell_2 }[/math]-norm is shrinking by a factor of [math]\displaystyle{ \rho_\max }[/math] under the action of [math]\displaystyle{ P }[/math]. Consequently,

[math]\displaystyle{ \|(q-\pi)P\|_2\le\rho_\max\|(q-\pi)\|_2\le\rho_\max. }[/math]

The last inequality is due to the fact that both [math]\displaystyle{ q }[/math] and [math]\displaystyle{ \pi }[/math] are stochastic vectors.

[math]\displaystyle{ \square }[/math]

Using this lemma, we can prove the following theorem.

Theorem
Let [math]\displaystyle{ A }[/math] be the adjacency matrix of a [math]\displaystyle{ d }[/math]-regular graph [math]\displaystyle{ G }[/math] with the spectrum [math]\displaystyle{ d=\lambda_1\ge\lambda_2\ge\cdots\ge\lambda_n }[/math], and let [math]\displaystyle{ \lambda_\max = \max(|\lambda_2|,|\lambda_n|)\, }[/math].
Let [math]\displaystyle{ P=\frac{1}{d}A }[/math] be the transition matrix of the random walk on [math]\displaystyle{ G }[/math], and [math]\displaystyle{ \pi=(\frac{1}{n},\ldots,\frac{1}{n}) }[/math] be the uniform distribution. For any initial distribution [math]\displaystyle{ q }[/math],
[math]\displaystyle{ \|qP^t-\pi\|_2\le\rho_\max^t=\left(\frac{\lambda_\max}{d}\right)^t }[/math].
Proof.
Prove by induction on [math]\displaystyle{ t }[/math] with the lemma.
[math]\displaystyle{ \square }[/math]

The next corollary follows immediately (due to Cauchy-Schwartz theorem) from the above theorem.

Corollary
Let [math]\displaystyle{ \pi=(\frac{1}{n},\ldots,\frac{1}{n}) }[/math] be the uniform distribution. For any initial distribution [math]\displaystyle{ q }[/math],
[math]\displaystyle{ \|qP^t-\pi\|_1\le\sqrt{n}\|qP^t-\pi\|_2\le\sqrt{n}\cdot\left(\frac{\lambda_\max}{d}\right)^t }[/math].

So the random walk on a graph converges exponentially fast if [math]\displaystyle{ \frac{\lambda_\max}{d} }[/math] is a constant [math]\displaystyle{ \lt 1 }[/math]. This is true when [math]\displaystyle{ \lambda_2\ge|\lambda_n| }[/math] and the spectral gap [math]\displaystyle{ (d-\lambda_2) }[/math] is a constant. This seems not a very nice condition. This situation can be changed by considering the lazy random walk.


Lazy random walk

Recall that for the lazy random walk, at each step, we first flip a fair coin to decide whether to walk or to stay. The corresponding transition matrix is

[math]\displaystyle{ Q=\frac{1}{2}(I+P)=\frac{1}{2}\left(I+\frac{1}{d}A\right). }[/math]

The spectrum of [math]\displaystyle{ Q }[/math] is given by

[math]\displaystyle{ \rho'_i=\frac{1+\frac{1}{d}\lambda_i}{2} }[/math]

where [math]\displaystyle{ \lambda_i }[/math] is the [math]\displaystyle{ i }[/math]th largest eigenvalue of the adjacency matrix [math]\displaystyle{ A }[/math]. For [math]\displaystyle{ d }[/math]-regular graph, it holds that

[math]\displaystyle{ 1=\rho_1'\ge \rho_2'\ge\cdots\ge\rho_n'\ge 0. }[/math]

The last inequality is due to that [math]\displaystyle{ |\lambda_i|\le d }[/math].

Therefore, for the lazy walk, it always holds that [math]\displaystyle{ \rho_\max'=\max(|\rho_2'|,|\rho_n'|)=\rho_2'=\frac{1+\frac{1}{d}\lambda_2}{2} }[/math].

Theorem (lazy random walk on expander)
Given a [math]\displaystyle{ d }[/math]-regular graph [math]\displaystyle{ G }[/math] with the spectrum [math]\displaystyle{ d=\lambda_1\ge\lambda_2\ge\cdots\ge\lambda_n }[/math], let [math]\displaystyle{ Q }[/math] be the transition matrix of the lazy random walk on [math]\displaystyle{ G }[/math], and [math]\displaystyle{ \pi=(\frac{1}{n},\ldots,\frac{1}{n}) }[/math] be the uniform distribution. For any initial distribution [math]\displaystyle{ q }[/math],
[math]\displaystyle{ \|qQ^t-\pi\|_1\le\sqrt{n}\left(\frac{1+\frac{1}{d}\lambda_2}{2}\right)^t }[/math].
In particular, the lazy random walk converges exponentially fast when the spectral gap [math]\displaystyle{ (d-\lambda_2) }[/math] is a constant [math]\displaystyle{ \gt 0 }[/math].

Due to the Cheeger's inequality, expander graphs have constant spectral gap, thus the lazy random walk on an expander graph converges exponentially fast.