随机算法 (Fall 2015)/Problem Set 2: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>Etone
imported>Etone
 
(3 intermediate revisions by the same user not shown)
Line 6: Line 6:
* Use the above bound to estimate the number of distinct <math>\alpha</math>-min cuts in <math>G</math>.
* Use the above bound to estimate the number of distinct <math>\alpha</math>-min cuts in <math>G</math>.


== Problem 2==
Consider the Min-Cut problem in edge-weighted graphs. Describe how you would generalize Karger's contraction algorithm to this case. What is the running time and success probability of your algorithm.


==Problem 3 ==
==Problem 2 ==
Suppose that we flip a fair coin <math>n</math> times to obtain <math>n</math> random bits. Consider all <math>m={n\choose 2}</math> pairs of these bits in some order. Let <math>Y_i</math> be the exclusive-or of the <math>i</math>th pair of bits, and let <math>Y=\sum_{i=1}^m Y_i</math> be the number of <math>Y_i</math> that equal 1.
Suppose that we flip a fair coin <math>n</math> times to obtain <math>n</math> random bits. Consider all <math>m={n\choose 2}</math> pairs of these bits in some order. Let <math>Y_i</math> be the exclusive-or of the <math>i</math>th pair of bits, and let <math>Y=\sum_{i=1}^m Y_i</math> be the number of <math>Y_i</math> that equal 1.
# Show that the <math>Y_i</math> are '''NOT''' mutually independent.
# Show that the <math>Y_i</math> are '''NOT''' mutually independent.
Line 16: Line 14:
# Using Chebyshev's inequality, prove a bound on <math>\Pr[|Y-\mathbf{E}[Y]|\ge n]</math>.
# Using Chebyshev's inequality, prove a bound on <math>\Pr[|Y-\mathbf{E}[Y]|\ge n]</math>.


==Problem 4==
==Problem 3==
Show that the maximum load when <math>n</math> balls are hashed into <math>n</math> bins using a hash function chosen from a 2-universal family of hash functions is at most <math>O(\sqrt{n})</math> with probability at least 0.99. Generalize this argument to <math>k</math>-universal hash functions.
 
Hint: Perhaps the only information we can use about a 2-universal hash function is the number of collisions. What does it become for <math>k</math>-universal hashing?
 
*(Optional) Can this <math>O(\sqrt{n})</math> be improved if the only thing we assume about the hash function is the 2-universality? Why?
 
== Problem 4==
;The maximum directed cut problem (MAX-DICUT).
We are given as input a directed graph <math>G=(V,E)</math>, with each directed edge <math>(u,v)\in E</math> having a nonnegative weight <math>w_{uv}\ge 0</math>. The goal is to partition <math>V</math> into two sets <math>S\,</math> and <math>\bar{S}=V\setminus S</math> so as to maximize the value of <math>\sum_{(u,v)\in E\atop u\in S,v\not\in S}w_{uv}</math>, that is, the total weight of the edges going from <math>S\,</math> to <math>\bar{S}</math>.
 
* Give a randomized <math>\frac{1}{4}</math>-approximation algorithm based on random sampling.
* Prove that the following is an integer programming for the problem:
:<math>
\begin{align}
\text{maximize} && \sum_{(i,j)\in E}w_{ij}z_{ij}\\
\text{subject to} && z_{ij} &\le x_i, & \forall (i,j)&\in E,\\
&& z_{ij} &\le 1-x_j, & \forall (i,j)&\in E,\\
&& x_i &\in\{0,1\}, & \forall i&\in V,\\
&& 0 \le z_{ij}&\le 1, & \forall (i,j)&\in E.
\end{align}
</math>
* Consider a randomized rounding algorithm that solves an LP relaxation of the above integer programming and puts vertex <math>i</math> in <math>S</math> with probability <math>f(x_i^*)</math>. We may assume that <math>f(x)</math> is a linear function in the form <math>f(x)=ax+b</math> with some constant <math>a</math> and <math>b</math> to be fixed. Try to find good <math>a</math> and <math>b</math> so that the randomized rounding algorithm has a good approximation ratio.
 
==Problem 5 ==
The set cover problem is defined as follows:
*Let <math>U=\{u_1,u_2,\ldots,u_n\}</math> be a set of <math>n</math> elements, and let <math>\mathcal{S}=\{S_1,S_2,\ldots,S_m\}</math> be a family of subsets of <math>U</math>. For each <math>u_i\in U</math>, let <math>w_i</math> be a nonnegative weight of <math>u_i</math>. The goal is to find a subset <math>V\subseteq U</math> with the minimum total weight <math>\sum_{i\in V}w_i</math>, that intersects with all <math>S_i\in\mathcal{S}</math>.
 
This problem is '''NP-hard'''.
 
('''Remark''': There are two equivalent definitions of the set cover problem. We take the '''hitting set''' version.)
 
Questions:
* Prove that the following is an integer programming for the problem:
:<math>
\begin{align}
\text{minimize} &&  \sum_{(i,j)\in E}w_{i}x_{i}\\
\text{subject to} && \sum_{i:u_i\in S_j}x_i &\ge 1, &1\le j\le m,\\
&& x_i &\in\{0,1\}, & 1\le i\le n.
\end{align}
</math>
* Give a randomized rounding algorithm which returns an <math>O(\log m)</math>-approximate solution with probability at least <math>\frac{1}{2}</math>. (Hint: you may repeat the randomized rounding process if there remains some uncovered subsets after one time of applying the randomized rounding.)

Latest revision as of 07:16, 13 November 2015

Problem 1

For any [math]\displaystyle{ \alpha\ge 1 }[/math], a cut [math]\displaystyle{ C }[/math] in an undirected (multi)graph [math]\displaystyle{ G(V,E) }[/math]is called an [math]\displaystyle{ \alpha }[/math]-min-cut if [math]\displaystyle{ |C|\le\alpha|C^*| }[/math] where [math]\displaystyle{ C^* }[/math] is a min-cut in [math]\displaystyle{ G }[/math].

  • Give a lower bound to the probability that a single iteration of Karger's Random Contraction algorithm returns an [math]\displaystyle{ \alpha }[/math]-min-cut in a graph [math]\displaystyle{ G(V,E) }[/math] of [math]\displaystyle{ n }[/math] vertices.
  • Use the above bound to estimate the number of distinct [math]\displaystyle{ \alpha }[/math]-min cuts in [math]\displaystyle{ G }[/math].


Problem 2

Suppose that we flip a fair coin [math]\displaystyle{ n }[/math] times to obtain [math]\displaystyle{ n }[/math] random bits. Consider all [math]\displaystyle{ m={n\choose 2} }[/math] pairs of these bits in some order. Let [math]\displaystyle{ Y_i }[/math] be the exclusive-or of the [math]\displaystyle{ i }[/math]th pair of bits, and let [math]\displaystyle{ Y=\sum_{i=1}^m Y_i }[/math] be the number of [math]\displaystyle{ Y_i }[/math] that equal 1.

  1. Show that the [math]\displaystyle{ Y_i }[/math] are NOT mutually independent.
  2. Show that the [math]\displaystyle{ Y_i }[/math] satisfy the property [math]\displaystyle{ \mathbf{E}[Y_iY_j]=\mathbf{E}[Y_i]\mathbf{E}[Y_j] }[/math].
  3. Compute [math]\displaystyle{ \mathbf{Var}[Y] }[/math].
  4. Using Chebyshev's inequality, prove a bound on [math]\displaystyle{ \Pr[|Y-\mathbf{E}[Y]|\ge n] }[/math].

Problem 3

Show that the maximum load when [math]\displaystyle{ n }[/math] balls are hashed into [math]\displaystyle{ n }[/math] bins using a hash function chosen from a 2-universal family of hash functions is at most [math]\displaystyle{ O(\sqrt{n}) }[/math] with probability at least 0.99. Generalize this argument to [math]\displaystyle{ k }[/math]-universal hash functions.

Hint: Perhaps the only information we can use about a 2-universal hash function is the number of collisions. What does it become for [math]\displaystyle{ k }[/math]-universal hashing?

  • (Optional) Can this [math]\displaystyle{ O(\sqrt{n}) }[/math] be improved if the only thing we assume about the hash function is the 2-universality? Why?

Problem 4

The maximum directed cut problem (MAX-DICUT).

We are given as input a directed graph [math]\displaystyle{ G=(V,E) }[/math], with each directed edge [math]\displaystyle{ (u,v)\in E }[/math] having a nonnegative weight [math]\displaystyle{ w_{uv}\ge 0 }[/math]. The goal is to partition [math]\displaystyle{ V }[/math] into two sets [math]\displaystyle{ S\, }[/math] and [math]\displaystyle{ \bar{S}=V\setminus S }[/math] so as to maximize the value of [math]\displaystyle{ \sum_{(u,v)\in E\atop u\in S,v\not\in S}w_{uv} }[/math], that is, the total weight of the edges going from [math]\displaystyle{ S\, }[/math] to [math]\displaystyle{ \bar{S} }[/math].

  • Give a randomized [math]\displaystyle{ \frac{1}{4} }[/math]-approximation algorithm based on random sampling.
  • Prove that the following is an integer programming for the problem:
[math]\displaystyle{ \begin{align} \text{maximize} && \sum_{(i,j)\in E}w_{ij}z_{ij}\\ \text{subject to} && z_{ij} &\le x_i, & \forall (i,j)&\in E,\\ && z_{ij} &\le 1-x_j, & \forall (i,j)&\in E,\\ && x_i &\in\{0,1\}, & \forall i&\in V,\\ && 0 \le z_{ij}&\le 1, & \forall (i,j)&\in E. \end{align} }[/math]
  • Consider a randomized rounding algorithm that solves an LP relaxation of the above integer programming and puts vertex [math]\displaystyle{ i }[/math] in [math]\displaystyle{ S }[/math] with probability [math]\displaystyle{ f(x_i^*) }[/math]. We may assume that [math]\displaystyle{ f(x) }[/math] is a linear function in the form [math]\displaystyle{ f(x)=ax+b }[/math] with some constant [math]\displaystyle{ a }[/math] and [math]\displaystyle{ b }[/math] to be fixed. Try to find good [math]\displaystyle{ a }[/math] and [math]\displaystyle{ b }[/math] so that the randomized rounding algorithm has a good approximation ratio.

Problem 5

The set cover problem is defined as follows:

  • Let [math]\displaystyle{ U=\{u_1,u_2,\ldots,u_n\} }[/math] be a set of [math]\displaystyle{ n }[/math] elements, and let [math]\displaystyle{ \mathcal{S}=\{S_1,S_2,\ldots,S_m\} }[/math] be a family of subsets of [math]\displaystyle{ U }[/math]. For each [math]\displaystyle{ u_i\in U }[/math], let [math]\displaystyle{ w_i }[/math] be a nonnegative weight of [math]\displaystyle{ u_i }[/math]. The goal is to find a subset [math]\displaystyle{ V\subseteq U }[/math] with the minimum total weight [math]\displaystyle{ \sum_{i\in V}w_i }[/math], that intersects with all [math]\displaystyle{ S_i\in\mathcal{S} }[/math].

This problem is NP-hard.

(Remark: There are two equivalent definitions of the set cover problem. We take the hitting set version.)

Questions:

  • Prove that the following is an integer programming for the problem:
[math]\displaystyle{ \begin{align} \text{minimize} && \sum_{(i,j)\in E}w_{i}x_{i}\\ \text{subject to} && \sum_{i:u_i\in S_j}x_i &\ge 1, &1\le j\le m,\\ && x_i &\in\{0,1\}, & 1\le i\le n. \end{align} }[/math]
  • Give a randomized rounding algorithm which returns an [math]\displaystyle{ O(\log m) }[/math]-approximate solution with probability at least [math]\displaystyle{ \frac{1}{2} }[/math]. (Hint: you may repeat the randomized rounding process if there remains some uncovered subsets after one time of applying the randomized rounding.)