随机算法 (Fall 2015)/Randomized rounding and 组合数学 (Spring 2015)/The probabilistic method: Difference between pages

From TCS Wiki
(Difference between pages)
Jump to navigation Jump to search
imported>Etone
(Created page with "= MAX-SAT= Suppose that we have a number of boolean variables <math>x_1,x_2,\ldots,\in\{\mathrm{true},\mathrm{false}\}</math>. A '''literal''' is either a variable <math>x_i</...")
 
imported>Etone
(Created page with "== The Probabilistic Method == The probabilistic method provides another way of proving the existence of objects: instead of explicitly constructing an object, we define a pro...")
 
Line 1: Line 1:
= MAX-SAT=
== The Probabilistic Method ==
Suppose that we have a number of boolean variables <math>x_1,x_2,\ldots,\in\{\mathrm{true},\mathrm{false}\}</math>. A '''literal''' is either a variable <math>x_i</math> itself or its negation <math>\neg x_i</math>. A logic expression is a '''conjunctive normal form (CNF)''' if it is written as the conjunction(AND) of a set of '''clauses''', where each clause is a disjunction(OR) of literals. For example:
The probabilistic method provides another way of proving the existence of objects: instead of explicitly constructing an object, we define a probability space of objects in which the probability is positive that a randomly selected object has the required property.
 
The basic principle of the probabilistic method is very simple, and can be stated in intuitive ways:
*If an object chosen randomly from a universe satisfies a property with positive probability, then there must be an object in the universe that satisfies that property.
:For example, for a ball(the object) randomly chosen from a box(the universe) of balls, if the probability that the chosen ball is blue(the property) is >0, then there must be a blue ball in the box.
*Any random variable assumes at least one value that is no smaller than its expectation, and at least one value that is no greater than the expectation.
:For example, if we know the average height of the students in the class is <math>\ell</math>, then we know there is a students whose height is at least <math>\ell</math>, and there is a student whose height is at most <math>\ell</math>.
 
Although the idea of  the probabilistic method is simple, it provides us a powerful tool for existential proof.
 
===Ramsey number===
 
Recall the Ramsey theorem which states that in a meeting of at least six people, there are either three people knowing each other or three people not knowing each other. In graph theoretical terms, this means that no matter how we color the edges of <math>K_6</math> (the complete graph on six vertices), there must be a '''monochromatic''' <math>K_3</math> (a triangle whose edges have the same color).
 
Generally, the '''Ramsey number''' <math>R(k,\ell)</math> is the smallest integer <math>n</math> such that in any two-coloring of the edges of a complete graph on <math>n</math> vertices <math>K_n</math> by red and blue, either there is a red <math>K_k</math> or there is a blue <math>K_\ell</math>.
 
Ramsey showed in 1929 that <math>R(k,\ell)</math> is finite for any <math>k</math> and <math>\ell</math>. It is extremely hard to compute the exact value of <math>R(k,\ell)</math>. Here we give a lower bound of <math>R(k,k)</math> by the probabilistic method.
 
{{Theorem
|Theorem (Erdős 1947)|
:If <math>{n\choose k}\cdot 2^{1-{k\choose 2}}<1</math> then it is possible to color the edges of <math>K_n</math> with two colors so that there is no monochromatic <math>K_k</math> subgraph.
}}
{{Proof| Consider a random two-coloring of edges of <math>K_n</math> obtained as follows:
* For each edge of <math>K_n</math>, independently flip a fair coin to decide the color of the edge.
 
For any fixed set <math>S</math> of <math>k</math> vertices, let <math>\mathcal{E}_S</math> be the event that the <math>K_k</math> subgraph induced by <math>S</math> is monochromatic. There are <math>{k\choose 2}</math> many edges in <math>K_k</math>, therefore
:<math>\Pr[\mathcal{E}_S]=2\cdot 2^{-{k\choose 2}}=2^{1-{k\choose 2}}.</math>
 
Since there are <math>{n\choose k}</math> possible choices of <math>S</math>, by the union bound
:<math>
:<math>
(x_1\vee \neg x_2 \vee \neg x_3)\wedge (\neg x_1\vee \neg x_3)\wedge (x_1\vee x_2\vee x_4)\wedge (x_4\vee \neg x_3)\wedge (x_4\vee \neg x_1).
\Pr[\exists S, \mathcal{E}_S]\le {n\choose k}\cdot\Pr[\mathcal{E}_S]={n\choose k}\cdot 2^{1-{k\choose 2}}.
</math>
</math>
Due to the assumption, <math>{n\choose k}\cdot 2^{1-{k\choose 2}}<1</math>, thus there exists a two coloring that none of <math>\mathcal{E}_S</math> occurs, which means  there is no monochromatic <math>K_k</math> subgraph.
}}
For <math>k\ge 3</math> and we take <math>n=\lfloor2^{k/2}\rfloor</math>, then
:<math>
\begin{align}
{n\choose k}\cdot 2^{1-{k\choose 2}}
&<
\frac{n^k}{k!}\cdot\frac{2^{1+\frac{k}{2}}}{2^{k^2/2}}\\
&\le
\frac{2^{k^2/2}}{k!}\cdot\frac{2^{1+\frac{k}{2}}}{2^{k^2/2}}\\
&=
\frac{2^{1+\frac{k}{2}}}{k!}\\
&<1.
\end{align}
</math>
By the above theorem, there exists a two-coloring of <math>K_n</math> that there is no monochromatic <math>K_k</math>. Therefore, the Ramsey number <math>R(k,k)>\lfloor2^{k/2}\rfloor</math> for all <math>k\ge 3</math>.
===Tournament===
A '''[http://en.wikipedia.org/wiki/Tournament_(graph_theory) tournament]''' (竞赛图) on a set <math>V</math> of <math>n</math> players is an '''orientation''' of the edges of the complete graph on the set of vertices <math>V</math>. Thus for every two distinct vertices <math>u,v</math> in <math>V</math>, either <math>(u,v)\in E</math> or <math>(v,u)\in E</math>, but not both.
We can think of the set <math>V</math> as a set of <math>n</math> players in which each pair participates in a single match, where <math>(u,v)</math> is in the tournament iff player <math>u</math> beats player <math>v</math>.
{{Theorem|Definition|
:We say that a tournament has '''<math>k</math>-paradoxical''' if for every set of <math>k</math> players there is a player who beats them all.
}}
Is it true for every finite <math>k</math>, there is a <math>k</math>-paradoxical tournament (on more than <math>k</math> vertices, of course)? This problem was first raised by Schütte, and as shown by Erdős, can be solved almost trivially by the probabilistic method.
{{Theorem|Theorem (Erdős 1963)|
:If <math>{n\choose k}\left(1-2^{-k}\right)^{n-k}<1</math> then there is a tournament on <math>n</math> vertices that is <math>k</math>-paradoxical.
}}
{{Proof|
Consider a uniformly random tournament <math>T</math> on the set <math>V=[n]</math>. For every fixed subset <math>S\in{V\choose k}</math> of <math>k</math> vertices, let <math>A_S</math> be the event defined as follows
:<math>A_S:\,</math> there is no vertex in <math>V\setminus S</math> that beats all vertices in <math>S</math>.
In a uniform random tournament, the orientations of edges are independent. For any <math>u\in V\setminus S</math>,
:<math>\Pr[u\mbox{ beats all }v\in S]=2^{-k}</math>.
Therefore, <math>\Pr[u\mbox{ does not beats all }v\in S]=1-2^{-k}</math> and
:<math>\Pr[A_S]=\prod_{u\in V\setminus S}\Pr[u\mbox{ does not beats all }v\in S]=(1-2^{-k})^{n-k}</math>.
It follows that
:<math>\Pr\left[\bigvee_{S\in{V\choose k}}A_S\right]\le \sum_{S\in{V\choose k}}\Pr[A_S]={n\choose k}(1-2^{-k})^{n-k}<1.</math>
Therefore,
:<math>\Pr[\,T\mbox{ is }k\mbox{-paradoxical }]=\Pr\left[\bigwedge_{S\in{V\choose k}}\overline{A_S}\right]=1-\Pr\left[\bigvee_{S\in{V\choose k}}A_S\right]>0.</math>
There is a <math>k</math>-paradoxical tournament.
}}
=== Linearity of expectation ===
Let <math>X</math> be a discrete '''random variable'''.  The expectation of <math>X</math> is defined as follows.
{{Theorem
|Definition (Expectation)|
:The '''expectation''' of a discrete random variable <math>X</math>, denoted by <math>\mathbf{E}[X]</math>, is given by
::<math>\begin{align}
\mathbf{E}[X] &= \sum_{x}x\Pr[X=x],
\end{align}</math>
:where the summation is over all values <math>x</math> in the range of <math>X</math>.
}}


The '''satisfiability (SAT)''' problem is that given as input a CNF formula decide whether the CNF is satisfiable, i.e. there exists an assignment of variables to the values of true and false so that all clauses are true. SAT is the first problem known to be '''NP-complete''' (the Cook-Levin theorem).  
A fundamental fact regarding the expectation is its '''linearity'''.


We consider the the optimization version of SAT, which ask for an assignment that the number of satisfied clauses is maximized.
{{Theorem
{{Theorem
|Problem (MAX-SAT)|
|Theorem (Linearity of Expectations)|
:Given a conjunctive normal form (CNF) formula of <math>m</math> clauses defined on <math>n</math> boolean variables <math>x_1,x_2,\ldots,x_n</math>, find a truth assignment to the boolean variables that maximizes the number of satisfied clauses.
:For any discrete random variables <math>X_1, X_2, \ldots, X_n</math>, and any real constants <math>a_1, a_2, \ldots, a_n</math>,
::<math>\begin{align}
\mathbf{E}\left[\sum_{i=1}^n a_iX_i\right] &= \sum_{i=1}^n a_i\cdot\mathbf{E}[X_i].
\end{align}</math>
}}
 
;Hamiltonian paths
The following result of Szele in 1943 is often considered the first use of the probabilistic method.
{{Theorem|Theorem (Szele 1943)|
:There is a tournament on <math>n</math> players with at least <math>n!2^{-(n-1)}</math> Hamiltonian paths.
}}
{{Proof|
Consider the uniform random tournament <math>T</math> on <math>[n]</math>. For any permutation <math>\pi</math> of <math>[n]</math>, let <math>X_{\pi}</math> be the indicator random variable defined as
:<math>X_{\pi}=\begin{cases}
1 & \forall i\in[n-1], (\pi_i,\pi_{i+1})\in T,\\
0 & \mbox{otherwise}.
\end{cases}</math>
In other words, <math>X_{\pi}</math> indicates whether <math>\pi_0\rightarrow\pi_1\rightarrow\pi_2\rightarrow\cdots\rightarrow\pi_{n-1}</math> gives a Hamiltonian path.
It holds that
:<math>\mathrm{E}[X_\pi]=1\cdot\Pr[X_\pi=1]+0\cdot\Pr[X_\pi=0]=\Pr[\forall i\in[n-1], (\pi_i,\pi_{i+1})\in T]=2^{-(n-1)}.</math>
 
Let <math>X=\sum_{\pi:\text{permutation of }[n]}X_\pi\,</math>. Clearly <math>X</math> is the number of Hamiltonian paths in the tournament <math>T</math>.
Due to the linearity of expectation,
:<math>\mathrm{E}[X]=\mathrm{E}\left[\sum_{\pi:\text{permutation of }[n]}X_\pi\right]=\sum_{\pi:\text{permutation of }[n]}\mathrm{E}[X_\pi]=n!2^{-(n-1)}.</math>
This is the average number of Hamiltonian paths in a tournament, where the average is taken over all tournaments.
Thus some tournament has at least <math>n!2^{-(n-1)}</math> Hamiltonian paths.
}}
}}


==The Probabilistic Method ==
===Independent sets===
A straightforward way to solve Max-SAT is to uniformly and independently assign each variable a random truth assignment. The following theorem is proved by the probabilistic method.
An independent set of a graph is a set of vertices with no edges between them. The following theorem gives a lower bound on the size of the largest independent set.
{{Theorem
{{Theorem
|Theorem|
|Theorem|
:For any set of <math>m</math> clauses, there is a truth assignment that satisfies at least <math>\frac{m}{2}</math> clauses.
:Let <math>G(V,E)</math> be a graph on <math>n</math> vertices with <math>m</math> edges. Then <math>G</math> has an independent set with at least <math>\frac{n^2}{4m}</math> vertices.
}}
}}
{{Proof| For each variable, independently assign a random value in <math>\{\mathrm{true},\mathrm{false}\}</math> with equal probability. For the <math>i</math>th clause, let <math>X_i</math> be the random variable which indicates whether the <math>i</math>th clause is satisfied. Suppose that there are <math>k</math> literals in the clause. The probability that the clause is satisfied is
{{Proof| Let <math>S</math> be a set of vertices constructed as follows:
:<math>\Pr[X_k=1]\ge(1-2^{-k})\ge\frac{1}{2}</math>.
:For each vertex <math>v\in V</math>:
:* <math>v</math> is included in <math>S</math> independently with probability <math>p</math>,
<math>p</math> to be determined.
 
Let <math>X=|S|</math>. It is obvious that <math>\mathbf{E}[X]=np</math>.


Let <math>X=\sum_{i=1}^m X_i</math> be the number of satisfied clauses. By the linearity of expectation,
For each edge <math>e\in E</math>, let <math>Y_{e}</math> be the random variable which indicates whether both endpoints of <math>e=uv</math> are in <math>S</math>.
:<math>
:<math>
\mathbf{E}[X]=\sum_{i=1}^{m}\mathbf{E}[X_i]\ge \frac{m}{2}.
\mathbf{E}[Y_{uv}]=\Pr[u\in S\wedge v\in S]=p^2.
</math>
</math>
Therefore, there exists an assignment such that at least <math>\frac{m}{2}</math> clauses are satisfied.
Let <math>Y</math> be the number of edges in the subgraph of <math>G</math> induced by <math>S</math>. It holds that <math>Y=\sum_{e\in E}Y_e</math>. By linearity of expectation,
:<math>\mathbf{E}[Y]=\sum_{e\in E}\mathbf{E}[Y_e]=mp^2</math>.
 
Note that although <math>S</math> is not necessary an independent set, it can be modified to one if for each edge <math>e</math> of the induced subgraph <math>G(S)</math>, we delete one of the endpoint of <math>e</math> from <math>S</math>. Let <math>S^*</math> be the resulting set. It is obvious that <math>S^*</math> is an independent set since there is no edge left in the induced subgraph <math>G(S^*)</math>.
 
Since there are <math>Y</math> edges in <math>G(S)</math>, there are at most <math>Y</math> vertices in <math>S</math> are deleted to make it become <math>S^*</math>. Therefore, <math>|S^*|\ge X-Y</math>. By linearity of expectation,
:<math>
\mathbf{E}[|S^*|]\ge\mathbf{E}[X-Y]=\mathbf{E}[X]-\mathbf{E}[Y]=np-mp^2.
</math>
The expectation is maximized when <math>p=\frac{n}{2m}</math>, thus
:<math>
\mathbf{E}[|S^*|]\ge n\cdot\frac{n}{2m}-m\left(\frac{n}{2m}\right)^2=\frac{n^2}{4m}.
</math>
There exists an independent set which contains at least <math>\frac{n^2}{4m}</math> vertices.
}}
}}


Note that this gives a randomized algorithm which returns a truth assignment satisfying at least <math>\frac{m}{2}</math> clauses in expectation. There are totally <math>m</math> clauses, thus the optimal solution is at most <math>m</math>, which means that this simple randomized algorithm is a <math>\frac{1}{2}</math>-approximation algorithm for the MAX-CUT problem.
=== Coloring large-girth graphs ===
The girth of a graph is the length of the shortest cycle of the graph.
{{Theorem|Definition|
Let <math>G(V,E)</math> be an undirected graph.
* A '''cycle''' of length <math>k</math> in <math>G</math> is a sequence of distinct vertices <math>v_1,v_2,\ldots,v_{k}</math> such that <math>v_iv_{i+1}\in E</math> for all <math>i=1,2,\ldots,k-1</math> and <math>v_kv_1\in E</math>.
* The '''girth''' of <math>G</math>, dented <math>g(G)</math>, is the length of the shortest cycle in <math>G</math>.
}}


== LP Relaxation + Randomized Rounding ==
The chromatic number of a graph is the minimum number of colors with which the graph can be ''properly'' colored.
For a clause <math>C_j</math>, let <math>C_i^+</math> be the set of indices of the variables that appear in the uncomplemented form in clause <math>C_j</math>, and let <math>C_i^-</math> be the set of indices of the variables that appear in the complemented form in clause <math>C_j</math>. The Max-SAT problem can be formulated as the following integer linear programing.
{{Theorem|Definition (chromatic number)|
* The '''chromatic number''' of <math>G</math>, denoted <math>\chi(G)</math>, is the minimal number of colors which we need to color the vertices of <math>G</math> so that no two adjacent vertices have the same color. Formally,
::<math>\chi(G)=\min\{C\in\mathbb{N}\mid \exists f:V\rightarrow[C]\mbox{ such that }\forall uv\in E, f(u)\neq f(v)\}</math>.
}}


In 1959, Erdős proved the following theorem: for any fixed <math>k</math> and <math>\ell</math>, there exists a finite graph with girth at least <math>k</math> and chromatic number at least <math>\ell</math>. This is considered a striking example of the probabilistic method. The statement of the theorem itself calls for nothing about probability or randomness. And the result is highly contra-intuitive: if the girth is large there is no simple reason why the graph could not be colored with a few colors. We can always "locally" color a cycle with 2 or 3 colors. Erdős' result shows that there are "global" restrictions for coloring, and although such configurations are very difficult to explicitly construct, with the probabilistic method, we know that they commonly exist.
{{Theorem| Theorem (Erdős 1959)|
: For all <math>k,\ell</math> there exists a graph <math>G</math> with <math>g(G)>\ell</math> and <math>\chi(G)>k\,</math>.
}}
It is very hard to directly analyze the chromatic number of a graph. We find that the chromatic number can be related to the size of the maximum independent set.
{{Theorem|Definition (independence number)|
* The '''independence number''' of <math>G</math>, denoted <math>\alpha(G)</math>, is the size of the largest independent set in <math>G</math>. Formally,
::<math>\alpha(G)=\max\{|S|\mid S\subseteq V\mbox{ and }\forall u,v\in S, uv\not\in E\}</math>.
}}
We observe the following relationship between the chromatic number and the independence number.
{{Theorem|Lemma|
:For any <math>n</math>-vertex graph,
::<math>\chi(G)\ge\frac{n}{\alpha(G)}</math>.
}}
{{Proof|
*In the optimal coloring, <math>n</math> vertices are partitioned into <math>\chi(G)</math> color classes according to the vertex color.
*Every color class is an independent set, or otherwise there exist two adjacent vertice with the same color.
*By the pigeonhole principle, there is a color class (hence an independent set) of size <math>\frac{n}{\chi(G)}</math>. Therefore, <math>\alpha(G)\ge\frac{n}{\chi(G)}</math>.
The lemma follows.
}}
Therefore, it is sufficient to prove that <math>\alpha(G)\le\frac{n}{k}</math> and <math>g(G)>\ell</math>.
{{Prooftitle|Proof of Erdős theorem|
Fix <math>\theta<\frac{1}{\ell}</math>. Let <math>G</math> be <math>G(n,p)</math> with <math>p=n^{\theta-1}</math>.
For any length-<math>i</math> simple cycle <math>\sigma</math>, let <math>X_\sigma</math> be the indicator random variable such that
:<math>
X_\sigma=
\begin{cases}
1 & \sigma\mbox{ is a cycle in }G,\\
0 & \mbox{otherwise}.
\end{cases}
</math>
The number of cycles of length at most <math>\ell</math> in graph <math>G</math> is
:<math>X=\sum_{i=3}^\ell\sum_{\sigma:i\text{-cycle}}X_\sigma</math>.
For any particular length-<math>i</math> simple cycle <math>\sigma</math>,
:<math>\mathbf{E}[X_\sigma]=\Pr[X_\sigma=1]=\Pr[\sigma\mbox{ is a cycle in }G]=p^i=n^{\theta i-i}</math>.
For any <math>3\le i\le n</math>, the number of length-<math>i</math> simple cycle is <math>\frac{n(n-1)\cdots (n-i+1)}{2i}</math>. By the linearity of expectation,
:<math>\mathbf{E}[X]=\sum_{i=3}^\ell\sum_{\sigma:i\text{-cycle}}\mathbf{E}[X_\sigma]=\sum_{i=3}^\ell\frac{n(n-1)\cdots (n-i+1)}{2i}n^{\theta i-i}\le \sum_{i=3}^\ell\frac{n^{\theta i}}{2i}=o(n)</math>.
Applying Markov's inequality,
:<math>
\Pr\left[X\ge \frac{n}{2}\right]\le\frac{\mathbf{E}[X]}{n/2}=o(1).
</math>
Therefore, with high probability the random graph has less than <math>n/2</math> short cycles.
Now we proceed to analyze the independence number. Let <math>m=\left\lceil\frac{3\ln n}{p}\right\rceil</math>, so that
:<math>
:<math>
\begin{align}
\begin{align}
\mbox{maximize} &\quad \sum_{j=1}^m z_j\\
\Pr[\alpha(G)\ge m]
\mbox{subject to} &\quad \sum_{i\in C_j^+}y_i+\sum_{i\in C_j^-}(1-y_i) \ge z_j, &&\forall 1\le j\le m\\
&\le\Pr\left[\exists S\in{V\choose m}\forall \{u,v\}\in{S\choose 2}, uv\not\in G\right]\\
&\qquad\qquad y_i \in\{0,1\}, &&\forall 1\le i\le n \\
&\le{n\choose m}(1-p)^{m\choose 2}\\
&\qquad\qquad z_j \in\{0,1\}, &&\forall 1\le j\le m
&<n^m\mathrm{e}^{-p{m\choose 2}}\\
&=\left(n\mathrm{e}^{-p(m-1)/2}\right)^m=o(1)
\end{align}
\end{align}
</math>
</math>
Each <math>y_i</math> in the programing indicates the truth assignment to the variable <math>x_i</math>, and each <math>z_j</math> indicates whether the claus <math>C_j</math> is satisfied. The inequalities ensure that a clause is deemed to be true only if at least one of the literals in the clause is assigned the value 1.
The probability that either of the above events occurs is  
 
The integer linear programming is relaxed to the following linear programming:
:<math>
:<math>
\begin{align}
\begin{align}
\mbox{maximize} &\quad \sum_{j=1}^m z_j\\
\Pr\left[X<\frac{n}{2}\vee \alpha(G)<m\right]
\mbox{subject to} &\quad \sum_{i\in C_j^+}y_i+\sum_{i\in C_j^-}(1-y_i) \ge z_j, &&\forall 1\le j\le m\\
\le \Pr\left[X<\frac{n}{2}\right]+\Pr\left[\alpha(G)<m\right]
&\qquad\qquad 0\le y_i\le 1, &&\forall 1\le i\le n \\
=o(1).
&\qquad\qquad 0\le z_j\le 1, &&\forall 1\le j\le m
\end{align}
\end{align}
</math>
</math>
Therefore, there exists a graph <math>G</math> with less than <math>n/2</math> "short" cycles, i.e., cycles of length at most <math>\ell</math>, and with <math>\alpha(G)<m\le 3n^{1-\theta}\ln n</math>.
Take each "short" cycle in <math>G</math> and remove a vertex from the cycle (and also remove all adjacent edges to the removed vertex). This gives a graph <math>G'</math> which has no short cycles, hence the girth <math>g(G')\ge\ell</math>. And <math>G'</math> has at least <math>n/2</math> vertices, because at most <math>n/2</math> vertices are removed.


Let <math>y_i^*</math> and <math>z_j^*</math> be the fractional optimal solutions to the above linear programming. Clearly, <math>\sum_{j=1}^mz_j^*</math> is an upper bound on the optimal number of satisfied clauses, i.e. we have
Notice that removing vertices cannot makes <math>\alpha(G)</math> grow. It holds that <math>\alpha(G')\le\alpha(G)</math>. Thus
:<math>\mathrm{OPT}\le\sum_{j=1}^mz_j^*</math>.
:<math>\chi(G')\ge\frac{n/2}{\alpha(G')}\ge\frac{n}{2m}\ge\frac{n^\theta}{6\ln n}</math>.
The theorem is proved by taking <math>n</math> sufficiently large so that this value is greater than <math>k</math>.
}}


Apply a very natural randomized rounding scheme. For each <math>1\le i\le n</math>, independently
The proof contains a very simple procedure which for any <math>k</math> and <math>\ell</math> ''generates'' such a graph <math>G</math> with <math>g(G)>\ell</math> and <math>\chi(G)>k</math>. The procedure is as such:
:<math>y_i
* Fix some <math>\theta<\frac{1}{\ell}</math>. Choose sufficiently large <math>n</math> with <math>\frac{n^\theta}{6\ln n}>k</math>, and let <math>p=n^{\theta-1}</math>.
=\begin{cases}
* Generate a random graph <math>G</math> as <math>G(n,p)</math>.
1 & \mbox{with probability }y_i^*.\\
* For each cycle of length at most <math>\ell</math> in <math>G</math>, remove a vertex from the cycle.
0 & \mbox{with probability }1-y_i^*.
The resulting graph <math>G'</math> satisfying that <math>g(G)>\ell</math> and <math>\chi(G)>k</math> with high probability.
\end{cases}
 
== Lovász Local Lemma==
Consider a set of "bad" events <math>A_1,A_2,\ldots,A_n</math>. Suppose that <math>\Pr[A_i]\le p</math> for all <math>1\le i\le n</math>. We want to show that there is a situation that none of the bad events occurs. Due to the probabilistic method, we need to prove that
:<math>
\Pr\left[\bigwedge_{i=1}^n\overline{A_i}\right]>0.
</math>
;Case 1<nowiki>: mutually independent events.</nowiki>
If all the bad events <math>A_1,A_2,\ldots,A_n</math> are mutually independent, then
:<math>
\Pr\left[\bigwedge_{i=1}^n\overline{A_i}\right]\ge(1-p)^n>0,
</math>
for any <math>p<1</math>.
 
;Case 2<nowiki>: arbitrarily dependent events.</nowiki>
On the other hand, if we put no assumption on the dependencies between the events, then by the union bound (which holds unconditionally),
:<math>
\Pr\left[\bigwedge_{i=1}^n\overline{A_i}\right]=1-\Pr\left[\bigvee_{i=1}^n A_i\right]\ge 1-np,
</math>
</math>
Correspondingly, each <math>x_i</math> is assigned to <tt>TRUE</tt> independently with probability <math>y_i^*</math>.  
which is not an interesting bound for <math>p\ge\frac{1}{n}</math>. We cannot improve bound without further information regarding the dependencies between the events.
 
----
 
We would like to know what is going on between the two extreme cases: mutually independent events, and arbitrarily dependent events. The Lovász local lemma provides such a tool.
 
The local lemma is powerful tool for showing the possibility of rare event under ''limited dependencies''. The structure of dependencies between a set of events is described by a '''dependency graph'''.


{{Theorem
{{Theorem
|Lemma|
|Definition|
: Let <math>C_j</math> be a clause with <math>k</math> literals. The probability that it is satisfied by randomized rounding is at least
:Let <math>A_1,A_2,\ldots,A_n</math> be a set of events. A graph <math>D=(V,E)</math> on the set of vertices <math>V=\{1,2,\ldots,n\}</math> is called a '''dependency graph''' for the events <math>A_1,\ldots,A_n</math> if for each <math>i</math>, <math>1\le i\le n</math>, the event <math>A_i</math> is mutually independent of all the events <math>\{A_j\mid (i,j)\not\in E\}</math>.
::<math>(1-(1-1/k)^k)z_j^*</math>.
}}
}}
{{Proof| Without loss of generality, we assume that all <math>k</math> variables appear in <math>C_j</math> in the uncomplemented form, and we assume that
:<math>C_j=x_1\vee x_2\vee\cdots\vee x_k</math>.
The complemented cases are symmetric.


Clause <math>C_j</math> remains unsatisfied by randomized rounding only if every one of <math>x_i</math>, <math>1\le i\le k</math>, is assigned to <tt>FALSE</tt>, which corresponds to that every one of <math>y_i</math>, <math>1\le i\le k</math>, is rounded to 0. This event occurs with probability <math>\prod_{i=1}^k(1-y_i^*)</math>. Therefore, the clause <math>C_j</math> is satisfied by the randomized rounding with probability
;Example
:<math>1-\prod_{i=1}^k(1-y_i^*)</math>.
:Let <math>X_1,X_2,\ldots,X_m</math> be a set of ''mutually independent'' random variables. Each event <math>A_i</math> is a predicate defined on a number of variables among <math>X_1,X_2,\ldots,X_m</math>. Let <math>v(A_i)</math> be the unique smallest set of variables which determine <math>A_i</math>. The dependency graph <math>D=(V,E)</math> is defined by
:::<math>(i,j)\in E</math> iff <math>v(A_i)\cap v(A_j)\neq \emptyset</math>.


By the linear programming constraints,
The following lemma, known as the Lovász local lemma, first proved by Erdős and Lovász in 1975, is an extremely powerful tool, as it supplies a way for dealing with rare events.
:<math>y_1^*+y_2^*+\cdots+y_k^*\ge z_j^*</math>.


Then the value of <math>1-\prod_{i=1}^k(1-y_i^*)</math> is minimized when all <math>y_i^*</math> are equal and <math>y_i^*=\frac{z_j^*}{k}</math>. Thus, the probability that <math>C_j</math> is satisfied is
{{Theorem
:<math>1-\prod_{i=1}^k(1-y_i^*)\ge 1-(1-z_j^*/k)^k\ge (1-(1-1/k)^k)z_j^*</math>,
|Lovász Local Lemma (symmetric case)|
where the last inequality is due to the concaveness of the function <math>1-(1-z_j^*/k)^k</math> of variable <math>z_j^*</math>.
:Let <math>A_1,A_2,\ldots,A_n</math> be a set of events, and assume that the following hold:
:#for all <math>1\le i\le n</math>, <math>\Pr[A_i]\le p</math>;
:#the maximum degree of the dependency graph for the events <math>A_1,A_2,\ldots,A_n</math> is <math>d</math>, and
:::<math>ep(d+1)\le 1</math>.
:Then
::<math>\Pr\left[\bigwedge_{i=1}^n\overline{A_i}\right]>0</math>.
}}
}}


For any <math>k\ge 1</math>, it holds that <math>1-(1-1/k)^k>1-1/e</math>. Therefore, by the linearity of expectation, the expected number of satisfied clauses by the randomized rounding, is at least
We will prove a general version of the local lemma, where the events <math>A_i</math> are not symmetric. This generalization is due to Spencer.
:<math>(1-1/e)\sum_{j=1}z_j^*\ge (1-1/e)\cdot\mathrm{OPT}</math>.
{{Theorem
The inequality is due to the fact that <math>\hat{z}_j</math> are the optimal fractional solutions to the relaxed LP, thus are no worse than the optimal integral solutions.
|Lovász Local Lemma (general case)|
:Let <math>D=(V,E)</math> be the dependency graph of events <math>A_1,A_2,\ldots,A_n</math>. Suppose there exist real numbers <math>x_1,x_2,\ldots, x_n</math> such that <math>0\le x_i<1</math> and for all <math>1\le i\le n</math>,
::<math>\Pr[A_i]\le x_i\prod_{(i,j)\in E}(1-x_j)</math>.
:Then
::<math>\Pr\left[\bigwedge_{i=1}^n\overline{A_i}\right]\ge\prod_{i=1}^n(1-x_i)</math>.
}}
{{Proof|
We can use the following probability identity to compute the probability of the intersection of events:
{{Theorem|Lemma 1|
:<math>\Pr\left[\bigwedge_{i=1}^n\overline{A_i}\right]=\prod_{i=1}^n\Pr\left[\overline{A_i}\mid \bigwedge_{j=1}^{i-1}\overline{A_{j}}\right]</math>.
}}
{{Proof|
By definition of conditional probability,
:<math>
\Pr\left[\overline{A_n}\mid\bigwedge_{i=1}^{n-1}\overline{A_{i}}\right]
=\frac{\Pr\left[\bigwedge_{i=1}^n\overline{A_{i}}\right]}
{\Pr\left[\bigwedge_{i=1}^{n-1}\overline{A_{i}}\right]}</math>,
so we have
:<math>\Pr\left[\bigwedge_{i=1}^n\overline{A_{i}}\right]=\Pr\left[\bigwedge_{i=1}^{n-1}\overline{A_{i}}\right]\Pr\left[\overline{A_n}\mid\bigwedge_{i=1}^{n-1}\overline{A_{i}}\right]</math>.
The lemma is proved by recursively applying this equation.
}}


== Choose a better solution ==
Next we prove by induction on <math>m</math> that for any set of <math>m</math> events <math>i_1,\ldots,i_m</math>,
For any instance of the Max-SAT, let <math>m_1</math> be the expected number of satisfied clauses when each variable is independently set to <tt>TRUE</tt> with probability <math>\frac{1}{2}</math>; and let <math>m_2</math> be the expected number of satisfied clauses when we use the linear programming followed by randomized rounding.
:<math>\Pr\left[A_{i_1}\mid \bigwedge_{j=2}^m\overline{A_{i_j}}\right]\le x_{i_1}</math>.
The local lemma is a direct consequence of this by applying Lemma 1.


We will show that on any instance of the Max-SAT, one of the two algorithms is a <math>\frac{3}{4}</math>-approximation algorithm.
For <math>m=1</math>, this is obvious. For general <math>m</math>, let <math>i_2,\ldots,i_k</math> be the set of vertices adjacent to <math>i_1</math> in the dependency graph. Clearly <math>k-1\le d</math>. And it holds that
{{Theorem
:<math>
|Theorem|
\Pr\left[A_{i_1}\mid \bigwedge_{j=2}^m\overline{A_{i_j}}\right]
:<math>\max\{m_1,m_2\}\ge\frac{3}{4}\cdot\mathrm{OPT}.</math>
=\frac{\Pr\left[ A_i\wedge \bigwedge_{j=2}^k\overline{A_{i_j}}\mid \bigwedge_{j=k+1}^m\overline{A_{i_j}}\right]}
{\Pr\left[\bigwedge_{j=2}^k\overline{A_{i_j}}\mid \bigwedge_{j=k+1}^m\overline{A_{i_j}}\right]}
</math>,
which is due to the basic conditional probability identity
:<math>\Pr[A\mid BC]=\frac{\Pr[AB\mid C]}{\Pr[B\mid C]}</math>.
We bound the numerator
:<math>
\begin{align}
\Pr\left[ A_{i_1}\wedge \bigwedge_{j=2}^k\overline{A_{i_j}}\mid \bigwedge_{j=k+1}^m\overline{A_{i_j}}\right]
&\le\Pr\left[ A_{i_1}\mid \bigwedge_{j=k+1}^m\overline{A_{i_j}}\right]\\
&=\Pr[A_{i_1}]\\
&\le x_{i_1}\prod_{(i_1,j)\in E}(1-x_j).
\end{align}
</math>
The equation is due to the independence between <math>A_{i_1}</math> and <math>A_{i_k+1},\ldots,A_{i_m}</math>.
 
The denominator can be expanded using Lemma 1 as
:<math>
\Pr\left[\bigwedge_{j=2}^k\overline{A_{i_j}}\mid \bigwedge_{j=k+1}^m\overline{A_{i_j}}\right]
=\prod_{j=2}^k\Pr\left[\overline{A_{i_j}}\mid \bigwedge_{\ell=j+1}^m\overline{A_{i_\ell}}\right]
</math>
which by the induction hypothesis, is at least
:<math>
\prod_{j=2}^k(1-x_{i_j})=\prod_{\{i_1,i_j\}\in E}(1-x_j)
</math>
where <math>E</math> is the edge set of the dependency graph.
 
Therefore,
:<math>
\Pr\left[A_{i_1}\mid \bigwedge_{j=2}^m\overline{A_{i_j}}\right]
\le\frac{x_{i_1}\prod_{(i_1,j)\in E}(1-x_j)}{\prod_{\{i_1,i_j\}\in E}(1-x_j)}\le x_{i_1}.
</math>
Applying Lemma 1,
:<math>
\begin{align}
\Pr\left[\bigwedge_{i=1}^n\overline{A_i}\right]
&=\prod_{i=1}^n\Pr\left[\overline{A_i}\mid \bigwedge_{j=1}^{i-1}\overline{A_{j}}\right]\\
&=\prod_{i=1}^n\left(1-\Pr\left[A_i\mid \bigwedge_{j=1}^{i-1}\overline{A_{j}}\right]\right)\\
&\ge\prod_{i=1}^n\left(1-x_i\right).
\end{align}
</math>
}}
 
To prove the symmetric case. Let <math>x_i=\frac{1}{d+1}</math> for all <math>i=1,2,\ldots,n</math>. Note that <math>\left(1-\frac{1}{d+1}\right)^d>\frac{1}{\mathrm{e}}</math>.
 
If the following conditions are satisfied:
:#for all <math>1\le i\le n</math>, <math>\Pr[A_i]\le p</math>;
:#<math>ep(d+1)\le 1</math>;
then for all <math>1\le i\le n</math>,
:<math>\Pr[A_i]\le p\le\frac{1}{e(d+1)}<\frac{1}{d+1}\left(1-\frac{1}{d+1}\right)^d\le x_i\prod_{(i,j)\in E}(1-x_j)</math>.
Due to the local lemma for general cases, this implies that
:<math>\Pr\left[\bigwedge_{i=1}^n\overline{A_i}\right]\ge\prod_{i=1}^n(1-x_i)=\left(1-\frac{1}{d+1}\right)^n>0</math>.
This gives the symmetric version of local lemma.
 
=== Ramsey number, revisited ===
{{Theorem|Ramsey number|
:Let <math>k,\ell</math> be positive integers. The Ramsey number <math>R(k,\ell)</math> is defined as the smallest integer satisfying:
:If <math>n\ge R(k,\ell)</math>, for any coloring of edges of <math>K_n</math> with two colors red and blue, there exists a red <math>K_k</math> or a blue <math>K_\ell</math>.
}}
 
The Ramsey theorem says that for any <math>k,\ell</math>, <math>R(k,\ell)</math> is finite. The actual value of <math>R(k,\ell)</math> is extremely difficult to compute.
We can use the local lemma to prove a lower bound for the diagonal Ramsey number.
{{Theorem|Theorem|
:<math>R(k,k)\ge Ck2^{k/2}</math> for some constant <math>C>0</math>.
}}
}}
{{Proof|It suffices to show that <math>\frac{(m_1+m_2)}{2}\ge\frac{3}{4}\sum_{j=1}^m z_j^*</math>. Letting <math>S_k</math> denote the set of clauses that contain <math>k</math> literals, we know that
{{Proof|
:<math>m_1=\sum_{k=1}^n\sum_{C_j\in S_k}(1-2^{-k})\ge\sum_{k=1}^n\sum_{C_j\in S_k}(1-2^{-k}) z_j^*.</math>
To prove a lower bound <math>R(k,k)>n</math>, it is sufficient to show that there exists a 2-coloring of <math>K_n</math> without a monochromatic <math>K_k</math>. We prove this by the probabilistic method.
By the analysis of randomized rounding,
 
:<math>m_2\ge\sum_{k=1}^n\sum_{C_j\in S_k}(1-(1-1/k)^k) z_j^*.</math>
Pick a random 2-coloring of <math>K_n</math> by coloring each edge uniformly and independently with one of the two colors. For any set <math>S</math> of <math>k</math> vertices, let <math>A_S</math> denote the event that <math>S</math> forms a monochromatic <math>K_k</math>. It is easy to see that <math>\Pr[A_s]=2^{1-{k\choose 2}}=p</math>.
Thus
 
:<math>\frac{(m_1+m_2)}{2}\ge \sum_{k=1}^n\sum_{C_j\in S_k}
For any <math>k</math>-subset <math>T</math> of vertices, <math>A_S</math> and <math>A_T</math> are dependent if and only if <math>|S\cap T|\ge 2</math>. For each <math>S</math>, the number of <math>T</math> that <math>|S\cap T|\ge 2</math> is at most <math>{k\choose 2}{n\choose k-2}</math>, so the max degree of the dependency graph is <math>d\le{k\choose 2}{n\choose k-2}</math>.
\frac{1-2^{-k}+1-(1-1/k)^k}{2} z_j^*.</math>
 
An easy calculation shows that <math>\frac{1-2^{-k}+1-(1-1/k)^k}{2}\ge\frac{3}{4}</math> for any <math>k</math>, so that we have
Take <math>n=Ck2^{k/2}</math> for some appropriate constant <math>C>0</math>.
:<math>\frac{(m_1+m_2)}{2}\ge \frac{3}{4}\sum_{k=1}^n\sum_{C_j\in S_k}z_j^*=\frac{3}{4}\sum_{j=1}^m z_j^*\ge \frac{3}{4}\cdot\mathrm{OPT}.</math>
:<math>
\begin{align}
\mathrm{e}p(d+1)
&\le \mathrm{e}2^{1-{k\choose 2}}\left({k\choose 2}{n\choose k-2}+1\right)\\
&\le 2^{3-{k\choose 2}}{k\choose 2}{n\choose k-2}\\
&\le 1
\end{align}
</math>
Applying the local lemma, the probability that there is no monochromatic <math>K_k</math> is
:<math>\Pr\left[\bigwedge_{S\in{[n]\choose k}}\overline{A_S}\right]>0</math>.
Therefore, there exists a 2-coloring of <math>K_n</math> which has no monochromatic <math>K_k</math>, which means
:<math>R(k,k)>n=Ck2^{k/2}</math>.
}}
}}

Revision as of 07:04, 16 November 2015

The Probabilistic Method

The probabilistic method provides another way of proving the existence of objects: instead of explicitly constructing an object, we define a probability space of objects in which the probability is positive that a randomly selected object has the required property.

The basic principle of the probabilistic method is very simple, and can be stated in intuitive ways:

  • If an object chosen randomly from a universe satisfies a property with positive probability, then there must be an object in the universe that satisfies that property.
For example, for a ball(the object) randomly chosen from a box(the universe) of balls, if the probability that the chosen ball is blue(the property) is >0, then there must be a blue ball in the box.
  • Any random variable assumes at least one value that is no smaller than its expectation, and at least one value that is no greater than the expectation.
For example, if we know the average height of the students in the class is [math]\displaystyle{ \ell }[/math], then we know there is a students whose height is at least [math]\displaystyle{ \ell }[/math], and there is a student whose height is at most [math]\displaystyle{ \ell }[/math].

Although the idea of the probabilistic method is simple, it provides us a powerful tool for existential proof.

Ramsey number

Recall the Ramsey theorem which states that in a meeting of at least six people, there are either three people knowing each other or three people not knowing each other. In graph theoretical terms, this means that no matter how we color the edges of [math]\displaystyle{ K_6 }[/math] (the complete graph on six vertices), there must be a monochromatic [math]\displaystyle{ K_3 }[/math] (a triangle whose edges have the same color).

Generally, the Ramsey number [math]\displaystyle{ R(k,\ell) }[/math] is the smallest integer [math]\displaystyle{ n }[/math] such that in any two-coloring of the edges of a complete graph on [math]\displaystyle{ n }[/math] vertices [math]\displaystyle{ K_n }[/math] by red and blue, either there is a red [math]\displaystyle{ K_k }[/math] or there is a blue [math]\displaystyle{ K_\ell }[/math].

Ramsey showed in 1929 that [math]\displaystyle{ R(k,\ell) }[/math] is finite for any [math]\displaystyle{ k }[/math] and [math]\displaystyle{ \ell }[/math]. It is extremely hard to compute the exact value of [math]\displaystyle{ R(k,\ell) }[/math]. Here we give a lower bound of [math]\displaystyle{ R(k,k) }[/math] by the probabilistic method.

Theorem (Erdős 1947)
If [math]\displaystyle{ {n\choose k}\cdot 2^{1-{k\choose 2}}\lt 1 }[/math] then it is possible to color the edges of [math]\displaystyle{ K_n }[/math] with two colors so that there is no monochromatic [math]\displaystyle{ K_k }[/math] subgraph.
Proof.
Consider a random two-coloring of edges of [math]\displaystyle{ K_n }[/math] obtained as follows:
  • For each edge of [math]\displaystyle{ K_n }[/math], independently flip a fair coin to decide the color of the edge.

For any fixed set [math]\displaystyle{ S }[/math] of [math]\displaystyle{ k }[/math] vertices, let [math]\displaystyle{ \mathcal{E}_S }[/math] be the event that the [math]\displaystyle{ K_k }[/math] subgraph induced by [math]\displaystyle{ S }[/math] is monochromatic. There are [math]\displaystyle{ {k\choose 2} }[/math] many edges in [math]\displaystyle{ K_k }[/math], therefore

[math]\displaystyle{ \Pr[\mathcal{E}_S]=2\cdot 2^{-{k\choose 2}}=2^{1-{k\choose 2}}. }[/math]

Since there are [math]\displaystyle{ {n\choose k} }[/math] possible choices of [math]\displaystyle{ S }[/math], by the union bound

[math]\displaystyle{ \Pr[\exists S, \mathcal{E}_S]\le {n\choose k}\cdot\Pr[\mathcal{E}_S]={n\choose k}\cdot 2^{1-{k\choose 2}}. }[/math]

Due to the assumption, [math]\displaystyle{ {n\choose k}\cdot 2^{1-{k\choose 2}}\lt 1 }[/math], thus there exists a two coloring that none of [math]\displaystyle{ \mathcal{E}_S }[/math] occurs, which means there is no monochromatic [math]\displaystyle{ K_k }[/math] subgraph.

[math]\displaystyle{ \square }[/math]

For [math]\displaystyle{ k\ge 3 }[/math] and we take [math]\displaystyle{ n=\lfloor2^{k/2}\rfloor }[/math], then

[math]\displaystyle{ \begin{align} {n\choose k}\cdot 2^{1-{k\choose 2}} &\lt \frac{n^k}{k!}\cdot\frac{2^{1+\frac{k}{2}}}{2^{k^2/2}}\\ &\le \frac{2^{k^2/2}}{k!}\cdot\frac{2^{1+\frac{k}{2}}}{2^{k^2/2}}\\ &= \frac{2^{1+\frac{k}{2}}}{k!}\\ &\lt 1. \end{align} }[/math]

By the above theorem, there exists a two-coloring of [math]\displaystyle{ K_n }[/math] that there is no monochromatic [math]\displaystyle{ K_k }[/math]. Therefore, the Ramsey number [math]\displaystyle{ R(k,k)\gt \lfloor2^{k/2}\rfloor }[/math] for all [math]\displaystyle{ k\ge 3 }[/math].

Tournament

A tournament (竞赛图) on a set [math]\displaystyle{ V }[/math] of [math]\displaystyle{ n }[/math] players is an orientation of the edges of the complete graph on the set of vertices [math]\displaystyle{ V }[/math]. Thus for every two distinct vertices [math]\displaystyle{ u,v }[/math] in [math]\displaystyle{ V }[/math], either [math]\displaystyle{ (u,v)\in E }[/math] or [math]\displaystyle{ (v,u)\in E }[/math], but not both.

We can think of the set [math]\displaystyle{ V }[/math] as a set of [math]\displaystyle{ n }[/math] players in which each pair participates in a single match, where [math]\displaystyle{ (u,v) }[/math] is in the tournament iff player [math]\displaystyle{ u }[/math] beats player [math]\displaystyle{ v }[/math].

Definition
We say that a tournament has [math]\displaystyle{ k }[/math]-paradoxical if for every set of [math]\displaystyle{ k }[/math] players there is a player who beats them all.

Is it true for every finite [math]\displaystyle{ k }[/math], there is a [math]\displaystyle{ k }[/math]-paradoxical tournament (on more than [math]\displaystyle{ k }[/math] vertices, of course)? This problem was first raised by Schütte, and as shown by Erdős, can be solved almost trivially by the probabilistic method.

Theorem (Erdős 1963)
If [math]\displaystyle{ {n\choose k}\left(1-2^{-k}\right)^{n-k}\lt 1 }[/math] then there is a tournament on [math]\displaystyle{ n }[/math] vertices that is [math]\displaystyle{ k }[/math]-paradoxical.
Proof.

Consider a uniformly random tournament [math]\displaystyle{ T }[/math] on the set [math]\displaystyle{ V=[n] }[/math]. For every fixed subset [math]\displaystyle{ S\in{V\choose k} }[/math] of [math]\displaystyle{ k }[/math] vertices, let [math]\displaystyle{ A_S }[/math] be the event defined as follows

[math]\displaystyle{ A_S:\, }[/math] there is no vertex in [math]\displaystyle{ V\setminus S }[/math] that beats all vertices in [math]\displaystyle{ S }[/math].

In a uniform random tournament, the orientations of edges are independent. For any [math]\displaystyle{ u\in V\setminus S }[/math],

[math]\displaystyle{ \Pr[u\mbox{ beats all }v\in S]=2^{-k} }[/math].

Therefore, [math]\displaystyle{ \Pr[u\mbox{ does not beats all }v\in S]=1-2^{-k} }[/math] and

[math]\displaystyle{ \Pr[A_S]=\prod_{u\in V\setminus S}\Pr[u\mbox{ does not beats all }v\in S]=(1-2^{-k})^{n-k} }[/math].

It follows that

[math]\displaystyle{ \Pr\left[\bigvee_{S\in{V\choose k}}A_S\right]\le \sum_{S\in{V\choose k}}\Pr[A_S]={n\choose k}(1-2^{-k})^{n-k}\lt 1. }[/math]

Therefore,

[math]\displaystyle{ \Pr[\,T\mbox{ is }k\mbox{-paradoxical }]=\Pr\left[\bigwedge_{S\in{V\choose k}}\overline{A_S}\right]=1-\Pr\left[\bigvee_{S\in{V\choose k}}A_S\right]\gt 0. }[/math]

There is a [math]\displaystyle{ k }[/math]-paradoxical tournament.

[math]\displaystyle{ \square }[/math]

Linearity of expectation

Let [math]\displaystyle{ X }[/math] be a discrete random variable. The expectation of [math]\displaystyle{ X }[/math] is defined as follows.

Definition (Expectation)
The expectation of a discrete random variable [math]\displaystyle{ X }[/math], denoted by [math]\displaystyle{ \mathbf{E}[X] }[/math], is given by
[math]\displaystyle{ \begin{align} \mathbf{E}[X] &= \sum_{x}x\Pr[X=x], \end{align} }[/math]
where the summation is over all values [math]\displaystyle{ x }[/math] in the range of [math]\displaystyle{ X }[/math].

A fundamental fact regarding the expectation is its linearity.

Theorem (Linearity of Expectations)
For any discrete random variables [math]\displaystyle{ X_1, X_2, \ldots, X_n }[/math], and any real constants [math]\displaystyle{ a_1, a_2, \ldots, a_n }[/math],
[math]\displaystyle{ \begin{align} \mathbf{E}\left[\sum_{i=1}^n a_iX_i\right] &= \sum_{i=1}^n a_i\cdot\mathbf{E}[X_i]. \end{align} }[/math]
Hamiltonian paths

The following result of Szele in 1943 is often considered the first use of the probabilistic method.

Theorem (Szele 1943)
There is a tournament on [math]\displaystyle{ n }[/math] players with at least [math]\displaystyle{ n!2^{-(n-1)} }[/math] Hamiltonian paths.
Proof.

Consider the uniform random tournament [math]\displaystyle{ T }[/math] on [math]\displaystyle{ [n] }[/math]. For any permutation [math]\displaystyle{ \pi }[/math] of [math]\displaystyle{ [n] }[/math], let [math]\displaystyle{ X_{\pi} }[/math] be the indicator random variable defined as

[math]\displaystyle{ X_{\pi}=\begin{cases} 1 & \forall i\in[n-1], (\pi_i,\pi_{i+1})\in T,\\ 0 & \mbox{otherwise}. \end{cases} }[/math]

In other words, [math]\displaystyle{ X_{\pi} }[/math] indicates whether [math]\displaystyle{ \pi_0\rightarrow\pi_1\rightarrow\pi_2\rightarrow\cdots\rightarrow\pi_{n-1} }[/math] gives a Hamiltonian path. It holds that

[math]\displaystyle{ \mathrm{E}[X_\pi]=1\cdot\Pr[X_\pi=1]+0\cdot\Pr[X_\pi=0]=\Pr[\forall i\in[n-1], (\pi_i,\pi_{i+1})\in T]=2^{-(n-1)}. }[/math]

Let [math]\displaystyle{ X=\sum_{\pi:\text{permutation of }[n]}X_\pi\, }[/math]. Clearly [math]\displaystyle{ X }[/math] is the number of Hamiltonian paths in the tournament [math]\displaystyle{ T }[/math]. Due to the linearity of expectation,

[math]\displaystyle{ \mathrm{E}[X]=\mathrm{E}\left[\sum_{\pi:\text{permutation of }[n]}X_\pi\right]=\sum_{\pi:\text{permutation of }[n]}\mathrm{E}[X_\pi]=n!2^{-(n-1)}. }[/math]

This is the average number of Hamiltonian paths in a tournament, where the average is taken over all tournaments. Thus some tournament has at least [math]\displaystyle{ n!2^{-(n-1)} }[/math] Hamiltonian paths.

[math]\displaystyle{ \square }[/math]

Independent sets

An independent set of a graph is a set of vertices with no edges between them. The following theorem gives a lower bound on the size of the largest independent set.

Theorem
Let [math]\displaystyle{ G(V,E) }[/math] be a graph on [math]\displaystyle{ n }[/math] vertices with [math]\displaystyle{ m }[/math] edges. Then [math]\displaystyle{ G }[/math] has an independent set with at least [math]\displaystyle{ \frac{n^2}{4m} }[/math] vertices.
Proof.
Let [math]\displaystyle{ S }[/math] be a set of vertices constructed as follows:
For each vertex [math]\displaystyle{ v\in V }[/math]:
  • [math]\displaystyle{ v }[/math] is included in [math]\displaystyle{ S }[/math] independently with probability [math]\displaystyle{ p }[/math],

[math]\displaystyle{ p }[/math] to be determined.

Let [math]\displaystyle{ X=|S| }[/math]. It is obvious that [math]\displaystyle{ \mathbf{E}[X]=np }[/math].

For each edge [math]\displaystyle{ e\in E }[/math], let [math]\displaystyle{ Y_{e} }[/math] be the random variable which indicates whether both endpoints of [math]\displaystyle{ e=uv }[/math] are in [math]\displaystyle{ S }[/math].

[math]\displaystyle{ \mathbf{E}[Y_{uv}]=\Pr[u\in S\wedge v\in S]=p^2. }[/math]

Let [math]\displaystyle{ Y }[/math] be the number of edges in the subgraph of [math]\displaystyle{ G }[/math] induced by [math]\displaystyle{ S }[/math]. It holds that [math]\displaystyle{ Y=\sum_{e\in E}Y_e }[/math]. By linearity of expectation,

[math]\displaystyle{ \mathbf{E}[Y]=\sum_{e\in E}\mathbf{E}[Y_e]=mp^2 }[/math].

Note that although [math]\displaystyle{ S }[/math] is not necessary an independent set, it can be modified to one if for each edge [math]\displaystyle{ e }[/math] of the induced subgraph [math]\displaystyle{ G(S) }[/math], we delete one of the endpoint of [math]\displaystyle{ e }[/math] from [math]\displaystyle{ S }[/math]. Let [math]\displaystyle{ S^* }[/math] be the resulting set. It is obvious that [math]\displaystyle{ S^* }[/math] is an independent set since there is no edge left in the induced subgraph [math]\displaystyle{ G(S^*) }[/math].

Since there are [math]\displaystyle{ Y }[/math] edges in [math]\displaystyle{ G(S) }[/math], there are at most [math]\displaystyle{ Y }[/math] vertices in [math]\displaystyle{ S }[/math] are deleted to make it become [math]\displaystyle{ S^* }[/math]. Therefore, [math]\displaystyle{ |S^*|\ge X-Y }[/math]. By linearity of expectation,

[math]\displaystyle{ \mathbf{E}[|S^*|]\ge\mathbf{E}[X-Y]=\mathbf{E}[X]-\mathbf{E}[Y]=np-mp^2. }[/math]

The expectation is maximized when [math]\displaystyle{ p=\frac{n}{2m} }[/math], thus

[math]\displaystyle{ \mathbf{E}[|S^*|]\ge n\cdot\frac{n}{2m}-m\left(\frac{n}{2m}\right)^2=\frac{n^2}{4m}. }[/math]

There exists an independent set which contains at least [math]\displaystyle{ \frac{n^2}{4m} }[/math] vertices.

[math]\displaystyle{ \square }[/math]

Coloring large-girth graphs

The girth of a graph is the length of the shortest cycle of the graph.

Definition

Let [math]\displaystyle{ G(V,E) }[/math] be an undirected graph.

  • A cycle of length [math]\displaystyle{ k }[/math] in [math]\displaystyle{ G }[/math] is a sequence of distinct vertices [math]\displaystyle{ v_1,v_2,\ldots,v_{k} }[/math] such that [math]\displaystyle{ v_iv_{i+1}\in E }[/math] for all [math]\displaystyle{ i=1,2,\ldots,k-1 }[/math] and [math]\displaystyle{ v_kv_1\in E }[/math].
  • The girth of [math]\displaystyle{ G }[/math], dented [math]\displaystyle{ g(G) }[/math], is the length of the shortest cycle in [math]\displaystyle{ G }[/math].

The chromatic number of a graph is the minimum number of colors with which the graph can be properly colored.

Definition (chromatic number)
  • The chromatic number of [math]\displaystyle{ G }[/math], denoted [math]\displaystyle{ \chi(G) }[/math], is the minimal number of colors which we need to color the vertices of [math]\displaystyle{ G }[/math] so that no two adjacent vertices have the same color. Formally,
[math]\displaystyle{ \chi(G)=\min\{C\in\mathbb{N}\mid \exists f:V\rightarrow[C]\mbox{ such that }\forall uv\in E, f(u)\neq f(v)\} }[/math].

In 1959, Erdős proved the following theorem: for any fixed [math]\displaystyle{ k }[/math] and [math]\displaystyle{ \ell }[/math], there exists a finite graph with girth at least [math]\displaystyle{ k }[/math] and chromatic number at least [math]\displaystyle{ \ell }[/math]. This is considered a striking example of the probabilistic method. The statement of the theorem itself calls for nothing about probability or randomness. And the result is highly contra-intuitive: if the girth is large there is no simple reason why the graph could not be colored with a few colors. We can always "locally" color a cycle with 2 or 3 colors. Erdős' result shows that there are "global" restrictions for coloring, and although such configurations are very difficult to explicitly construct, with the probabilistic method, we know that they commonly exist.

Theorem (Erdős 1959)
For all [math]\displaystyle{ k,\ell }[/math] there exists a graph [math]\displaystyle{ G }[/math] with [math]\displaystyle{ g(G)\gt \ell }[/math] and [math]\displaystyle{ \chi(G)\gt k\, }[/math].

It is very hard to directly analyze the chromatic number of a graph. We find that the chromatic number can be related to the size of the maximum independent set.

Definition (independence number)
  • The independence number of [math]\displaystyle{ G }[/math], denoted [math]\displaystyle{ \alpha(G) }[/math], is the size of the largest independent set in [math]\displaystyle{ G }[/math]. Formally,
[math]\displaystyle{ \alpha(G)=\max\{|S|\mid S\subseteq V\mbox{ and }\forall u,v\in S, uv\not\in E\} }[/math].

We observe the following relationship between the chromatic number and the independence number.

Lemma
For any [math]\displaystyle{ n }[/math]-vertex graph,
[math]\displaystyle{ \chi(G)\ge\frac{n}{\alpha(G)} }[/math].
Proof.
  • In the optimal coloring, [math]\displaystyle{ n }[/math] vertices are partitioned into [math]\displaystyle{ \chi(G) }[/math] color classes according to the vertex color.
  • Every color class is an independent set, or otherwise there exist two adjacent vertice with the same color.
  • By the pigeonhole principle, there is a color class (hence an independent set) of size [math]\displaystyle{ \frac{n}{\chi(G)} }[/math]. Therefore, [math]\displaystyle{ \alpha(G)\ge\frac{n}{\chi(G)} }[/math].

The lemma follows.

[math]\displaystyle{ \square }[/math]

Therefore, it is sufficient to prove that [math]\displaystyle{ \alpha(G)\le\frac{n}{k} }[/math] and [math]\displaystyle{ g(G)\gt \ell }[/math].

Proof of Erdős theorem

Fix [math]\displaystyle{ \theta\lt \frac{1}{\ell} }[/math]. Let [math]\displaystyle{ G }[/math] be [math]\displaystyle{ G(n,p) }[/math] with [math]\displaystyle{ p=n^{\theta-1} }[/math].

For any length-[math]\displaystyle{ i }[/math] simple cycle [math]\displaystyle{ \sigma }[/math], let [math]\displaystyle{ X_\sigma }[/math] be the indicator random variable such that

[math]\displaystyle{ X_\sigma= \begin{cases} 1 & \sigma\mbox{ is a cycle in }G,\\ 0 & \mbox{otherwise}. \end{cases} }[/math]

The number of cycles of length at most [math]\displaystyle{ \ell }[/math] in graph [math]\displaystyle{ G }[/math] is

[math]\displaystyle{ X=\sum_{i=3}^\ell\sum_{\sigma:i\text{-cycle}}X_\sigma }[/math].

For any particular length-[math]\displaystyle{ i }[/math] simple cycle [math]\displaystyle{ \sigma }[/math],

[math]\displaystyle{ \mathbf{E}[X_\sigma]=\Pr[X_\sigma=1]=\Pr[\sigma\mbox{ is a cycle in }G]=p^i=n^{\theta i-i} }[/math].

For any [math]\displaystyle{ 3\le i\le n }[/math], the number of length-[math]\displaystyle{ i }[/math] simple cycle is [math]\displaystyle{ \frac{n(n-1)\cdots (n-i+1)}{2i} }[/math]. By the linearity of expectation,

[math]\displaystyle{ \mathbf{E}[X]=\sum_{i=3}^\ell\sum_{\sigma:i\text{-cycle}}\mathbf{E}[X_\sigma]=\sum_{i=3}^\ell\frac{n(n-1)\cdots (n-i+1)}{2i}n^{\theta i-i}\le \sum_{i=3}^\ell\frac{n^{\theta i}}{2i}=o(n) }[/math].

Applying Markov's inequality,

[math]\displaystyle{ \Pr\left[X\ge \frac{n}{2}\right]\le\frac{\mathbf{E}[X]}{n/2}=o(1). }[/math]

Therefore, with high probability the random graph has less than [math]\displaystyle{ n/2 }[/math] short cycles.

Now we proceed to analyze the independence number. Let [math]\displaystyle{ m=\left\lceil\frac{3\ln n}{p}\right\rceil }[/math], so that

[math]\displaystyle{ \begin{align} \Pr[\alpha(G)\ge m] &\le\Pr\left[\exists S\in{V\choose m}\forall \{u,v\}\in{S\choose 2}, uv\not\in G\right]\\ &\le{n\choose m}(1-p)^{m\choose 2}\\ &\lt n^m\mathrm{e}^{-p{m\choose 2}}\\ &=\left(n\mathrm{e}^{-p(m-1)/2}\right)^m=o(1) \end{align} }[/math]

The probability that either of the above events occurs is

[math]\displaystyle{ \begin{align} \Pr\left[X\lt \frac{n}{2}\vee \alpha(G)\lt m\right] \le \Pr\left[X\lt \frac{n}{2}\right]+\Pr\left[\alpha(G)\lt m\right] =o(1). \end{align} }[/math]

Therefore, there exists a graph [math]\displaystyle{ G }[/math] with less than [math]\displaystyle{ n/2 }[/math] "short" cycles, i.e., cycles of length at most [math]\displaystyle{ \ell }[/math], and with [math]\displaystyle{ \alpha(G)\lt m\le 3n^{1-\theta}\ln n }[/math].

Take each "short" cycle in [math]\displaystyle{ G }[/math] and remove a vertex from the cycle (and also remove all adjacent edges to the removed vertex). This gives a graph [math]\displaystyle{ G' }[/math] which has no short cycles, hence the girth [math]\displaystyle{ g(G')\ge\ell }[/math]. And [math]\displaystyle{ G' }[/math] has at least [math]\displaystyle{ n/2 }[/math] vertices, because at most [math]\displaystyle{ n/2 }[/math] vertices are removed.

Notice that removing vertices cannot makes [math]\displaystyle{ \alpha(G) }[/math] grow. It holds that [math]\displaystyle{ \alpha(G')\le\alpha(G) }[/math]. Thus

[math]\displaystyle{ \chi(G')\ge\frac{n/2}{\alpha(G')}\ge\frac{n}{2m}\ge\frac{n^\theta}{6\ln n} }[/math].

The theorem is proved by taking [math]\displaystyle{ n }[/math] sufficiently large so that this value is greater than [math]\displaystyle{ k }[/math].

[math]\displaystyle{ \square }[/math]

The proof contains a very simple procedure which for any [math]\displaystyle{ k }[/math] and [math]\displaystyle{ \ell }[/math] generates such a graph [math]\displaystyle{ G }[/math] with [math]\displaystyle{ g(G)\gt \ell }[/math] and [math]\displaystyle{ \chi(G)\gt k }[/math]. The procedure is as such:

  • Fix some [math]\displaystyle{ \theta\lt \frac{1}{\ell} }[/math]. Choose sufficiently large [math]\displaystyle{ n }[/math] with [math]\displaystyle{ \frac{n^\theta}{6\ln n}\gt k }[/math], and let [math]\displaystyle{ p=n^{\theta-1} }[/math].
  • Generate a random graph [math]\displaystyle{ G }[/math] as [math]\displaystyle{ G(n,p) }[/math].
  • For each cycle of length at most [math]\displaystyle{ \ell }[/math] in [math]\displaystyle{ G }[/math], remove a vertex from the cycle.

The resulting graph [math]\displaystyle{ G' }[/math] satisfying that [math]\displaystyle{ g(G)\gt \ell }[/math] and [math]\displaystyle{ \chi(G)\gt k }[/math] with high probability.

Lovász Local Lemma

Consider a set of "bad" events [math]\displaystyle{ A_1,A_2,\ldots,A_n }[/math]. Suppose that [math]\displaystyle{ \Pr[A_i]\le p }[/math] for all [math]\displaystyle{ 1\le i\le n }[/math]. We want to show that there is a situation that none of the bad events occurs. Due to the probabilistic method, we need to prove that

[math]\displaystyle{ \Pr\left[\bigwedge_{i=1}^n\overline{A_i}\right]\gt 0. }[/math]
Case 1: mutually independent events.

If all the bad events [math]\displaystyle{ A_1,A_2,\ldots,A_n }[/math] are mutually independent, then

[math]\displaystyle{ \Pr\left[\bigwedge_{i=1}^n\overline{A_i}\right]\ge(1-p)^n\gt 0, }[/math]

for any [math]\displaystyle{ p\lt 1 }[/math].

Case 2: arbitrarily dependent events.

On the other hand, if we put no assumption on the dependencies between the events, then by the union bound (which holds unconditionally),

[math]\displaystyle{ \Pr\left[\bigwedge_{i=1}^n\overline{A_i}\right]=1-\Pr\left[\bigvee_{i=1}^n A_i\right]\ge 1-np, }[/math]

which is not an interesting bound for [math]\displaystyle{ p\ge\frac{1}{n} }[/math]. We cannot improve bound without further information regarding the dependencies between the events.


We would like to know what is going on between the two extreme cases: mutually independent events, and arbitrarily dependent events. The Lovász local lemma provides such a tool.

The local lemma is powerful tool for showing the possibility of rare event under limited dependencies. The structure of dependencies between a set of events is described by a dependency graph.

Definition
Let [math]\displaystyle{ A_1,A_2,\ldots,A_n }[/math] be a set of events. A graph [math]\displaystyle{ D=(V,E) }[/math] on the set of vertices [math]\displaystyle{ V=\{1,2,\ldots,n\} }[/math] is called a dependency graph for the events [math]\displaystyle{ A_1,\ldots,A_n }[/math] if for each [math]\displaystyle{ i }[/math], [math]\displaystyle{ 1\le i\le n }[/math], the event [math]\displaystyle{ A_i }[/math] is mutually independent of all the events [math]\displaystyle{ \{A_j\mid (i,j)\not\in E\} }[/math].
Example
Let [math]\displaystyle{ X_1,X_2,\ldots,X_m }[/math] be a set of mutually independent random variables. Each event [math]\displaystyle{ A_i }[/math] is a predicate defined on a number of variables among [math]\displaystyle{ X_1,X_2,\ldots,X_m }[/math]. Let [math]\displaystyle{ v(A_i) }[/math] be the unique smallest set of variables which determine [math]\displaystyle{ A_i }[/math]. The dependency graph [math]\displaystyle{ D=(V,E) }[/math] is defined by
[math]\displaystyle{ (i,j)\in E }[/math] iff [math]\displaystyle{ v(A_i)\cap v(A_j)\neq \emptyset }[/math].

The following lemma, known as the Lovász local lemma, first proved by Erdős and Lovász in 1975, is an extremely powerful tool, as it supplies a way for dealing with rare events.

Lovász Local Lemma (symmetric case)
Let [math]\displaystyle{ A_1,A_2,\ldots,A_n }[/math] be a set of events, and assume that the following hold:
  1. for all [math]\displaystyle{ 1\le i\le n }[/math], [math]\displaystyle{ \Pr[A_i]\le p }[/math];
  2. the maximum degree of the dependency graph for the events [math]\displaystyle{ A_1,A_2,\ldots,A_n }[/math] is [math]\displaystyle{ d }[/math], and
[math]\displaystyle{ ep(d+1)\le 1 }[/math].
Then
[math]\displaystyle{ \Pr\left[\bigwedge_{i=1}^n\overline{A_i}\right]\gt 0 }[/math].

We will prove a general version of the local lemma, where the events [math]\displaystyle{ A_i }[/math] are not symmetric. This generalization is due to Spencer.

Lovász Local Lemma (general case)
Let [math]\displaystyle{ D=(V,E) }[/math] be the dependency graph of events [math]\displaystyle{ A_1,A_2,\ldots,A_n }[/math]. Suppose there exist real numbers [math]\displaystyle{ x_1,x_2,\ldots, x_n }[/math] such that [math]\displaystyle{ 0\le x_i\lt 1 }[/math] and for all [math]\displaystyle{ 1\le i\le n }[/math],
[math]\displaystyle{ \Pr[A_i]\le x_i\prod_{(i,j)\in E}(1-x_j) }[/math].
Then
[math]\displaystyle{ \Pr\left[\bigwedge_{i=1}^n\overline{A_i}\right]\ge\prod_{i=1}^n(1-x_i) }[/math].
Proof.

We can use the following probability identity to compute the probability of the intersection of events:

Lemma 1
[math]\displaystyle{ \Pr\left[\bigwedge_{i=1}^n\overline{A_i}\right]=\prod_{i=1}^n\Pr\left[\overline{A_i}\mid \bigwedge_{j=1}^{i-1}\overline{A_{j}}\right] }[/math].
Proof.

By definition of conditional probability,

[math]\displaystyle{ \Pr\left[\overline{A_n}\mid\bigwedge_{i=1}^{n-1}\overline{A_{i}}\right] =\frac{\Pr\left[\bigwedge_{i=1}^n\overline{A_{i}}\right]} {\Pr\left[\bigwedge_{i=1}^{n-1}\overline{A_{i}}\right]} }[/math],

so we have

[math]\displaystyle{ \Pr\left[\bigwedge_{i=1}^n\overline{A_{i}}\right]=\Pr\left[\bigwedge_{i=1}^{n-1}\overline{A_{i}}\right]\Pr\left[\overline{A_n}\mid\bigwedge_{i=1}^{n-1}\overline{A_{i}}\right] }[/math].

The lemma is proved by recursively applying this equation.

[math]\displaystyle{ \square }[/math]

Next we prove by induction on [math]\displaystyle{ m }[/math] that for any set of [math]\displaystyle{ m }[/math] events [math]\displaystyle{ i_1,\ldots,i_m }[/math],

[math]\displaystyle{ \Pr\left[A_{i_1}\mid \bigwedge_{j=2}^m\overline{A_{i_j}}\right]\le x_{i_1} }[/math].

The local lemma is a direct consequence of this by applying Lemma 1.

For [math]\displaystyle{ m=1 }[/math], this is obvious. For general [math]\displaystyle{ m }[/math], let [math]\displaystyle{ i_2,\ldots,i_k }[/math] be the set of vertices adjacent to [math]\displaystyle{ i_1 }[/math] in the dependency graph. Clearly [math]\displaystyle{ k-1\le d }[/math]. And it holds that

[math]\displaystyle{ \Pr\left[A_{i_1}\mid \bigwedge_{j=2}^m\overline{A_{i_j}}\right] =\frac{\Pr\left[ A_i\wedge \bigwedge_{j=2}^k\overline{A_{i_j}}\mid \bigwedge_{j=k+1}^m\overline{A_{i_j}}\right]} {\Pr\left[\bigwedge_{j=2}^k\overline{A_{i_j}}\mid \bigwedge_{j=k+1}^m\overline{A_{i_j}}\right]} }[/math],

which is due to the basic conditional probability identity

[math]\displaystyle{ \Pr[A\mid BC]=\frac{\Pr[AB\mid C]}{\Pr[B\mid C]} }[/math].

We bound the numerator

[math]\displaystyle{ \begin{align} \Pr\left[ A_{i_1}\wedge \bigwedge_{j=2}^k\overline{A_{i_j}}\mid \bigwedge_{j=k+1}^m\overline{A_{i_j}}\right] &\le\Pr\left[ A_{i_1}\mid \bigwedge_{j=k+1}^m\overline{A_{i_j}}\right]\\ &=\Pr[A_{i_1}]\\ &\le x_{i_1}\prod_{(i_1,j)\in E}(1-x_j). \end{align} }[/math]

The equation is due to the independence between [math]\displaystyle{ A_{i_1} }[/math] and [math]\displaystyle{ A_{i_k+1},\ldots,A_{i_m} }[/math].

The denominator can be expanded using Lemma 1 as

[math]\displaystyle{ \Pr\left[\bigwedge_{j=2}^k\overline{A_{i_j}}\mid \bigwedge_{j=k+1}^m\overline{A_{i_j}}\right] =\prod_{j=2}^k\Pr\left[\overline{A_{i_j}}\mid \bigwedge_{\ell=j+1}^m\overline{A_{i_\ell}}\right] }[/math]

which by the induction hypothesis, is at least

[math]\displaystyle{ \prod_{j=2}^k(1-x_{i_j})=\prod_{\{i_1,i_j\}\in E}(1-x_j) }[/math]

where [math]\displaystyle{ E }[/math] is the edge set of the dependency graph.

Therefore,

[math]\displaystyle{ \Pr\left[A_{i_1}\mid \bigwedge_{j=2}^m\overline{A_{i_j}}\right] \le\frac{x_{i_1}\prod_{(i_1,j)\in E}(1-x_j)}{\prod_{\{i_1,i_j\}\in E}(1-x_j)}\le x_{i_1}. }[/math]

Applying Lemma 1,

[math]\displaystyle{ \begin{align} \Pr\left[\bigwedge_{i=1}^n\overline{A_i}\right] &=\prod_{i=1}^n\Pr\left[\overline{A_i}\mid \bigwedge_{j=1}^{i-1}\overline{A_{j}}\right]\\ &=\prod_{i=1}^n\left(1-\Pr\left[A_i\mid \bigwedge_{j=1}^{i-1}\overline{A_{j}}\right]\right)\\ &\ge\prod_{i=1}^n\left(1-x_i\right). \end{align} }[/math]
[math]\displaystyle{ \square }[/math]

To prove the symmetric case. Let [math]\displaystyle{ x_i=\frac{1}{d+1} }[/math] for all [math]\displaystyle{ i=1,2,\ldots,n }[/math]. Note that [math]\displaystyle{ \left(1-\frac{1}{d+1}\right)^d\gt \frac{1}{\mathrm{e}} }[/math].

If the following conditions are satisfied:

  1. for all [math]\displaystyle{ 1\le i\le n }[/math], [math]\displaystyle{ \Pr[A_i]\le p }[/math];
  2. [math]\displaystyle{ ep(d+1)\le 1 }[/math];

then for all [math]\displaystyle{ 1\le i\le n }[/math],

[math]\displaystyle{ \Pr[A_i]\le p\le\frac{1}{e(d+1)}\lt \frac{1}{d+1}\left(1-\frac{1}{d+1}\right)^d\le x_i\prod_{(i,j)\in E}(1-x_j) }[/math].

Due to the local lemma for general cases, this implies that

[math]\displaystyle{ \Pr\left[\bigwedge_{i=1}^n\overline{A_i}\right]\ge\prod_{i=1}^n(1-x_i)=\left(1-\frac{1}{d+1}\right)^n\gt 0 }[/math].

This gives the symmetric version of local lemma.

Ramsey number, revisited

Ramsey number
Let [math]\displaystyle{ k,\ell }[/math] be positive integers. The Ramsey number [math]\displaystyle{ R(k,\ell) }[/math] is defined as the smallest integer satisfying:
If [math]\displaystyle{ n\ge R(k,\ell) }[/math], for any coloring of edges of [math]\displaystyle{ K_n }[/math] with two colors red and blue, there exists a red [math]\displaystyle{ K_k }[/math] or a blue [math]\displaystyle{ K_\ell }[/math].

The Ramsey theorem says that for any [math]\displaystyle{ k,\ell }[/math], [math]\displaystyle{ R(k,\ell) }[/math] is finite. The actual value of [math]\displaystyle{ R(k,\ell) }[/math] is extremely difficult to compute. We can use the local lemma to prove a lower bound for the diagonal Ramsey number.

Theorem
[math]\displaystyle{ R(k,k)\ge Ck2^{k/2} }[/math] for some constant [math]\displaystyle{ C\gt 0 }[/math].
Proof.

To prove a lower bound [math]\displaystyle{ R(k,k)\gt n }[/math], it is sufficient to show that there exists a 2-coloring of [math]\displaystyle{ K_n }[/math] without a monochromatic [math]\displaystyle{ K_k }[/math]. We prove this by the probabilistic method.

Pick a random 2-coloring of [math]\displaystyle{ K_n }[/math] by coloring each edge uniformly and independently with one of the two colors. For any set [math]\displaystyle{ S }[/math] of [math]\displaystyle{ k }[/math] vertices, let [math]\displaystyle{ A_S }[/math] denote the event that [math]\displaystyle{ S }[/math] forms a monochromatic [math]\displaystyle{ K_k }[/math]. It is easy to see that [math]\displaystyle{ \Pr[A_s]=2^{1-{k\choose 2}}=p }[/math].

For any [math]\displaystyle{ k }[/math]-subset [math]\displaystyle{ T }[/math] of vertices, [math]\displaystyle{ A_S }[/math] and [math]\displaystyle{ A_T }[/math] are dependent if and only if [math]\displaystyle{ |S\cap T|\ge 2 }[/math]. For each [math]\displaystyle{ S }[/math], the number of [math]\displaystyle{ T }[/math] that [math]\displaystyle{ |S\cap T|\ge 2 }[/math] is at most [math]\displaystyle{ {k\choose 2}{n\choose k-2} }[/math], so the max degree of the dependency graph is [math]\displaystyle{ d\le{k\choose 2}{n\choose k-2} }[/math].

Take [math]\displaystyle{ n=Ck2^{k/2} }[/math] for some appropriate constant [math]\displaystyle{ C\gt 0 }[/math].

[math]\displaystyle{ \begin{align} \mathrm{e}p(d+1) &\le \mathrm{e}2^{1-{k\choose 2}}\left({k\choose 2}{n\choose k-2}+1\right)\\ &\le 2^{3-{k\choose 2}}{k\choose 2}{n\choose k-2}\\ &\le 1 \end{align} }[/math]

Applying the local lemma, the probability that there is no monochromatic [math]\displaystyle{ K_k }[/math] is

[math]\displaystyle{ \Pr\left[\bigwedge_{S\in{[n]\choose k}}\overline{A_S}\right]\gt 0 }[/math].

Therefore, there exists a 2-coloring of [math]\displaystyle{ K_n }[/math] which has no monochromatic [math]\displaystyle{ K_k }[/math], which means

[math]\displaystyle{ R(k,k)\gt n=Ck2^{k/2} }[/math].
[math]\displaystyle{ \square }[/math]