概率论 (Summer 2013)/Problem Set 2 and 组合数学 (Spring 2014)/Problem Set 2: Difference between pages

From TCS Wiki
(Difference between pages)
Jump to navigation Jump to search
imported>Zhangchihao
No edit summary
 
imported>Etone
 
Line 1: Line 1:
== Problem 1 ==
== Problem 1==
We play the following game:  
Prove the following identity:  
*<math>\sum_{k=1}^n k{n\choose k}= n2^{n-1}</math>.


Start with <math>n</math> people, each with 2 hands. None of these hands hold each other.  At each round, uniformly pick 2 free hands and let these two hands hold together. Repeat this until no free hands left.
(Hint: Use double counting.)
 
* What is the expected number of cycles made by people holding hands with each other (one person with left hand holding right hand is also counted as a cycle) at the end of the game?


== Problem 2 ==
== Problem 2 ==
(Erdős-Spencer 1974)


In <i>Balls-and-Bins</i> model, we throw <math>n</math> balls independently and uniformly at random into <math>n</math> bins, then the maximum load is <math>\Theta(\frac{\ln n}{\ln\ln n})</math> with high probability.
Let <math>n</math> coins of weights 0 and 1 be given. We are also given a scale with which we may weigh any subset of the coins. Our goal is to determine the weights of coins (that is, to known which coins are 0 and which are 1) with the minimal number of weighings.  


The <i>two-choice paradigm</i> is another way to throw <math>n</math> balls into <math>n</math> bins: each ball is thrown into the least loaded of 2 bins chosen independently and uniformly at random and breaks the tie arbitrarily. The maximum load of two-choice paradigm is <math>\Theta(\ln\ln n)</math> with high probability, which is exponentially less than the previous one. This phenomenon is called the <i>power of two choices</i>.
This problem can be formalized as follows: A collection <math>S_1,S_1,\ldots,S_m\subseteq [n]</math> is called '''determining''' if an arbitrary subset <math>T\subseteq[n]</math> can be uniquely determined by the cardinalities <math>|S_i\cap T|, 1\le i\le m</math>.


Now consider the following three paradigms:
* Prove that if there is a determining collection <math>S_1,S_1,\ldots,S_m\subseteq [n]</math>, then there is a way to determine the weights of <math>n</math> coins with <math>m</math> weighings.
* Use pigeonhole principle to show that if a collection <math>S_1,S_1,\ldots,S_m\subseteq [n]</math> is determining, then it must hold that <math>m\ge \frac{n}{\log_2(n+1)}</math>.


# The first <math>n/2</math> balls are thrown into bins independently and uniformly at random. The remaining <math>n/2</math> balls are thrown into bins using two-choice paradigm.
(This gives a lower bound for the number of weighings required to determine the weights of <math>n</math> coins.)
# The first <math>n/2</math> balls are thrown into bins using two-choice paradigm. The remaining <math>n/2</math> balls are thrown into bins independently and uniformly at random.
# Assume all <math>n</math> balls are in a sequence. For every <math>1\le i\le n</math>, if <math>i</math> is odd, we throw <math>i</math>th ball into bins independently and uniformly at random, otherwise, we throw it into bins using two-choice paradigm.


What is the maximum load with high probability in each of three paradigms. You need to give an asymptotically tight bound (i.e. <math>\Theta(\cdot)</math>).


== Problem 3 ==
== Problem 3 ==


Consider a sequence of <math>n</math> flips of an unbiased coin. Let <math>H_i</math> denote the absolute value of the excess of the number of HEADS over the number of TAILS seen in the first <math>i</math> flips. Define <math>H=\max_i H_i</math>. Show that <math>\mathbf{E}[H_i]=\Theta(\sqrt{i})</math>, and that <math>\mathbf{E}[H]=\Theta(\sqrt{n})</math>.
A set of vertices <math>D\subseteq V</math> of graph <math>G(V,E)</math> is a [http://en.wikipedia.org/wiki/Dominating_set ''dominating set''] if for every <math>v\in V</math>, it holds that <math>v\in D</math> or <math>v</math> is adjacent to a vertex in <math>D</math>. The problem of computing minimum dominating set is NP-hard.
 
* Prove that for every <math>d</math>-regular graph with <math>n</math> vertices, there exists a dominating set with size at most <math>\frac{n(1+\ln(d+1))}{d+1}</math>.
 
* Try to obtain an upper bound for the size of dominating set using Lovász Local Lemma. Is it better or worse than previous one?


== Problem 4 ==
== Problem 4 ==
Let <math>H(W,F)</math> be a graph and <math>n>|W|</math> be an integer. It is known that for some graph <math>G(V,E)</math> such that <math>|V|=n</math>, <math>|E|=m</math>, <math>G</math> does not contain <math>H</math> as a subgraph. Prove that for <math>k>\frac{n^2\ln n}{m}</math>, there is an edge <math>k</math>-coloring for <math>K_n</math> that <math>K_n</math> contains no monochromatic <math>H</math>.
Remark: Let <math>E=\binom{V}{2}</math> be the edge set of <math>K_n</math>. "An edge <math>k</math>-coloring for <math>K_n</math>" is a mapping <math>f:E\to[k]</math>.


Let <math>X</math> be a random variable with expectation <math>\mu_X</math> and standard deviation <math>\sigma_X</math>.
== Problem 5 ==


# Show that for any <math>t\in\mathbb{R}^+</math>,
Let <math>G(V,E)</math> be a cycle of length <math>k\cdot n</math> and let <math>V=V_1\cup V_2\cup\dots V_n</math> be a partition of its <math>k\cdot n</math> vertices into <math>n</math> pairwise disjoint subsets, each of cardinality <math>k</math>.
::<math>
For <math>k\ge 11</math>, show that there must be an independent set of <math>G</math> containing precisely one vertex from each <math>V_i</math>.
\Pr[X-\mu_X\ge t\sigma_X]\le\frac{1}{1+t^2},
</math>
This version of the Chebyshev inequality is sometimes referred to as the <b>Chebyshev-Cantelli bound</b>.


# Prove that
Hint: you can use Lovász Local Lemma.
::<math>
\Pr[|X-\mu_X|\ge t\sigma_X]\le\frac{2}{1+t^2}.
</math>
Under what circumstances does this give a better bound than the Chebyshev inequality?

Revision as of 11:26, 9 April 2014

Problem 1

Prove the following identity:

  • [math]\displaystyle{ \sum_{k=1}^n k{n\choose k}= n2^{n-1} }[/math].

(Hint: Use double counting.)

Problem 2

(Erdős-Spencer 1974)

Let [math]\displaystyle{ n }[/math] coins of weights 0 and 1 be given. We are also given a scale with which we may weigh any subset of the coins. Our goal is to determine the weights of coins (that is, to known which coins are 0 and which are 1) with the minimal number of weighings.

This problem can be formalized as follows: A collection [math]\displaystyle{ S_1,S_1,\ldots,S_m\subseteq [n] }[/math] is called determining if an arbitrary subset [math]\displaystyle{ T\subseteq[n] }[/math] can be uniquely determined by the cardinalities [math]\displaystyle{ |S_i\cap T|, 1\le i\le m }[/math].

  • Prove that if there is a determining collection [math]\displaystyle{ S_1,S_1,\ldots,S_m\subseteq [n] }[/math], then there is a way to determine the weights of [math]\displaystyle{ n }[/math] coins with [math]\displaystyle{ m }[/math] weighings.
  • Use pigeonhole principle to show that if a collection [math]\displaystyle{ S_1,S_1,\ldots,S_m\subseteq [n] }[/math] is determining, then it must hold that [math]\displaystyle{ m\ge \frac{n}{\log_2(n+1)} }[/math].

(This gives a lower bound for the number of weighings required to determine the weights of [math]\displaystyle{ n }[/math] coins.)


Problem 3

A set of vertices [math]\displaystyle{ D\subseteq V }[/math] of graph [math]\displaystyle{ G(V,E) }[/math] is a dominating set if for every [math]\displaystyle{ v\in V }[/math], it holds that [math]\displaystyle{ v\in D }[/math] or [math]\displaystyle{ v }[/math] is adjacent to a vertex in [math]\displaystyle{ D }[/math]. The problem of computing minimum dominating set is NP-hard.

  • Prove that for every [math]\displaystyle{ d }[/math]-regular graph with [math]\displaystyle{ n }[/math] vertices, there exists a dominating set with size at most [math]\displaystyle{ \frac{n(1+\ln(d+1))}{d+1} }[/math].
  • Try to obtain an upper bound for the size of dominating set using Lovász Local Lemma. Is it better or worse than previous one?

Problem 4

Let [math]\displaystyle{ H(W,F) }[/math] be a graph and [math]\displaystyle{ n\gt |W| }[/math] be an integer. It is known that for some graph [math]\displaystyle{ G(V,E) }[/math] such that [math]\displaystyle{ |V|=n }[/math], [math]\displaystyle{ |E|=m }[/math], [math]\displaystyle{ G }[/math] does not contain [math]\displaystyle{ H }[/math] as a subgraph. Prove that for [math]\displaystyle{ k\gt \frac{n^2\ln n}{m} }[/math], there is an edge [math]\displaystyle{ k }[/math]-coloring for [math]\displaystyle{ K_n }[/math] that [math]\displaystyle{ K_n }[/math] contains no monochromatic [math]\displaystyle{ H }[/math].

Remark: Let [math]\displaystyle{ E=\binom{V}{2} }[/math] be the edge set of [math]\displaystyle{ K_n }[/math]. "An edge [math]\displaystyle{ k }[/math]-coloring for [math]\displaystyle{ K_n }[/math]" is a mapping [math]\displaystyle{ f:E\to[k] }[/math].

Problem 5

Let [math]\displaystyle{ G(V,E) }[/math] be a cycle of length [math]\displaystyle{ k\cdot n }[/math] and let [math]\displaystyle{ V=V_1\cup V_2\cup\dots V_n }[/math] be a partition of its [math]\displaystyle{ k\cdot n }[/math] vertices into [math]\displaystyle{ n }[/math] pairwise disjoint subsets, each of cardinality [math]\displaystyle{ k }[/math]. For [math]\displaystyle{ k\ge 11 }[/math], show that there must be an independent set of [math]\displaystyle{ G }[/math] containing precisely one vertex from each [math]\displaystyle{ V_i }[/math].

Hint: you can use Lovász Local Lemma.