随机算法 (Spring 2014) and 组合数学 (Spring 2014)/Problem Set 2: Difference between pages

From TCS Wiki
(Difference between pages)
Jump to navigation Jump to search
imported>Etone
 
imported>Etone
 
Line 1: Line 1:
{{Infobox
== Problem 1==
|name        = Infobox
Prove the following identity:
|bodystyle    =  
*<math>\sum_{k=1}^n k{n\choose k}= n2^{n-1}</math>.
|title        = <font size=3>随机算法
<br>Randomized Algorithms</font>
|titlestyle  =


|image        =
(Hint: Use double counting.)
|imagestyle  =
|caption      =
|captionstyle =
|headerstyle  = background:#ccf;
|labelstyle  = background:#ddf;
|datastyle    =


|header1 =Instructor
== Problem 2 ==
|label1  =
(Erdős-Spencer 1974)
|data1  =
|header2 =  
|label2  =
|data2  = 尹一通
|header3 =
|label3  = Email
|data3  = yitong.yin@gmail.com  yinyt@nju.edu.cn 
|header4 =
|label4= office
|data4= 计算机系 804
|header5 = Class
|label5  =
|data5  =
|header6 =
|label6  = Class meetings
|data6  = Tuesday, 10am-12pm <br> 仙I-101
|header7 =
|label7  = Place
|data7  =
|header8 =
|label8  = Office hours
|data8  = Wednesday, 2-4pm <br>计算机系 804
|header9 = Textbooks
|label9  =
|data9  =  
|header10 =
|label10  =  
|data10  = [[File:MR-randomized-algorithms.png|border|100px]]
|header11 =
|label11  =
|data11  = Motwani and Raghavan. <br>''Randomized Algorithms''.<br> Cambridge Univ Press, 1995.
|header12 =
|label12  =
|data12  = [[File:Probability_and_Computing.png|border|100px]]
|header13 =
|label13  =
|data13  =  Mitzenmacher and Upfal. <br>''Probability and Computing: Randomized Algorithms and Probabilistic Analysis''. <br> Cambridge Univ Press, 2005.
|belowstyle = background:#ddf;
|below =
}}


This is the page for the class ''Randomized Algorithms'' for the Spring 2014 semester. Students who take this class should check this page periodically for content updates and new announcements.  
Let <math>n</math> coins of weights 0 and 1 be given. We are also given a scale with which we may weigh any subset of the coins. Our goal is to determine the weights of coins (that is, to known which coins are 0 and which are 1) with the minimal number of weighings.  


= Announcement =
This problem can be formalized as follows: A collection <math>S_1,S_1,\ldots,S_m\subseteq [n]</math> is called '''determining''' if an arbitrary subset <math>T\subseteq[n]</math> can be uniquely determined by the cardinalities <math>|S_i\cap T|, 1\le i\le m</math>.
To be added


= Course info =
* Prove that if there is a determining collection <math>S_1,S_1,\ldots,S_m\subseteq [n]</math>, then there is a way to determine the weights of <math>n</math> coins with <math>m</math> weighings.
* '''Instructor ''': 尹一通,
* Use pigeonhole principle to show that if a collection <math>S_1,S_1,\ldots,S_m\subseteq [n]</math> is determining, then it must hold that <math>m\ge \frac{n}{\log_2(n+1)}</math>.
:*email: yitong.yin@gmail.com, yinyt@nju.edu.cn
:*office: 计算机系 804.
* '''Class meeting''': Tuesday 10am-12pm, 仙I-101.
* '''Office hour''': Wednesday 2-4pm, 计算机系 804.


= Syllabus =
(This gives a lower bound for the number of weighings required to determine the weights of <math>n</math> coins.)


=== 先修课程 Prerequisites ===
* 必须:离散数学,概率论,线性代数。
* 推荐:算法设计与分析。


=== Course materials ===
== Problem 3 ==
* [[随机算法 (Spring 2014)/Course materials|<font size=3>教材和参考书</font>]]


=== 成绩 Grades ===
A set of vertices <math>D\subseteq V</math> of graph <math>G(V,E)</math> is a [http://en.wikipedia.org/wiki/Dominating_set ''dominating set''] if for every <math>v\in V</math>, it holds that <math>v\in D</math> or <math>v</math> is adjacent to a vertex in <math>D</math>. The problem of computing minimum dominating set is NP-hard.
* 课程成绩:本课程将会有若干次作业和一次期末考试。最终成绩将由平时作业成绩和期末考试成绩综合得出。
* 迟交:如果有特殊的理由,无法按时完成作业,请提前联系授课老师,给出正当理由。否则迟交的作业将不被接受。


=== <font color=red> 学术诚信 Academic Integrity </font>===
* Prove that for every <math>d</math>-regular graph with <math>n</math> vertices, there exists a dominating set with size at most <math>\frac{n(1+\ln(d+1))}{d+1}</math>.
学术诚信是所有从事学术活动的学生和学者最基本的职业道德底线,本课程将不遗余力的维护学术诚信规范,违反这一底线的行为将不会被容忍。


作业完成的原则:署你名字的工作必须由你完成。允许讨论,但作业必须独立完成,并在作业中列出所有参与讨论的人。不允许其他任何形式的合作——尤其是与已经完成作业的同学“讨论”。
* Try to obtain an upper bound for the size of dominating set using Lovász Local Lemma. Is it better or worse than previous one?


本课程将对剽窃行为采取零容忍的态度。在完成作业过程中,对他人工作(出版物、互联网资料、其他人的作业等)直接的文本抄袭和对关键思想、关键元素的抄袭,按照 [http://www.acm.org/publications/policies/plagiarism_policy ACM Policy on Plagiarism]的解释,都将视为剽窃。剽窃者成绩将被取消。如果发现互相抄袭行为,<font color=red> 抄袭和被抄袭双方的成绩都将被取消</font>。因此请主动防止自己的作业被他人抄袭。
== Problem 4 ==
Let <math>H(W,F)</math> be a graph and <math>n>|W|</math> be an integer. It is known that for some graph <math>G(V,E)</math> such that <math>|V|=n</math>, <math>|E|=m</math>, <math>G</math> does not contain <math>H</math> as a subgraph. Prove that for <math>k>\frac{n^2\ln n}{m}</math>, there is an edge <math>k</math>-coloring for <math>K_n</math> that <math>K_n</math> contains no monochromatic <math>H</math>.


学术诚信影响学生个人的品行,也关乎整个教育系统的正常运转。为了一点分数而做出学术不端的行为,不仅使自己沦为一个欺骗者,也使他人的诚实努力失去意义。让我们一起努力维护一个诚信的环境。
Remark: Let <math>E=\binom{V}{2}</math> be the edge set of <math>K_n</math>. "An edge <math>k</math>-coloring for <math>K_n</math>" is a mapping <math>f:E\to[k]</math>.


= Assignments =
== Problem 5 ==


= Lecture Notes =
Let <math>G(V,E)</math> be a cycle of length <math>k\cdot n</math> and let <math>V=V_1\cup V_2\cup\dots V_n</math> be a partition of its <math>k\cdot n</math> vertices into <math>n</math> pairwise disjoint subsets, each of cardinality <math>k</math>.
# [[随机算法 (Spring 2014)/Introduction and Probability Space|Introduction and Probability Space]]: checking matrix multiplication, polynomial identity testing, communication complexity
For <math>k\ge 11</math>, show that there must be an independent set of <math>G</math> containing precisely one vertex from each <math>V_i</math>.
# [[随机算法 (Spring 2014)/Conditional Probability|Conditional Probability]]: polynomial identity testing, min-cut
# [[随机算法 (Spring 2014)/Random Variables and Expectations|Random Variables and Expectations]]: random quicksort, balls and bins


= The Probability Theory Toolkit =
Hint: you can use Lovász Local Lemma.
* [http://en.wikipedia.org/wiki/Probability_space Probability space] and [http://en.wikipedia.org/wiki/Probability_axioms probability axioms]
* [http://en.wikipedia.org/wiki/Independence_(probability_theory)#Independent_events Independent events]
* [http://en.wikipedia.org/wiki/Conditional_probability Conditional probability]
* [http://en.wikipedia.org/wiki/Random_variable Random variable] and [http://en.wikipedia.org/wiki/Expected_value expectation]
* [http://en.wikipedia.org/wiki/Expected_value#Linearity Linearity of expectation]
* The [http://en.wikipedia.org/wiki/Law_of_total_probability law of total probability] and the [http://en.wikipedia.org/wiki/Law_of_total_expectation law of total expectation]
* The [http://en.wikipedia.org/wiki/Boole's_inequality union bound]
* [http://en.wikipedia.org/wiki/Bernoulli_trial Bernoulli trials]
* [http://en.wikipedia.org/wiki/Geometric_distribution Geometric distribution]
* [http://en.wikipedia.org/wiki/Binomial_distribution Binomial distribution]
* [http://en.wikipedia.org/wiki/Markov's_inequality Markov's inequality]
* [http://en.wikipedia.org/wiki/Variance Variance] and [http://en.wikipedia.org/wiki/Covariance covariance]
* [http://en.wikipedia.org/wiki/Chebyshev's_inequality Chebyshev's inequality]
* [http://en.wikipedia.org/wiki/Chernoff_bound Chernoff bound]
* [http://en.wikipedia.org/wiki/Martingale_(probability_theory) Martingale]
* [http://en.wikipedia.org/wiki/Azuma's_inequality Azuma's inequality] and [http://en.wikipedia.org/wiki/Hoeffding's_inequality Hoeffding's inequality]
* [http://en.wikipedia.org/wiki/Doob_martingale Doob martingale]
* [http://en.wikipedia.org/wiki/Pairwise_independence k-wise independence]
* The [http://en.wikipedia.org/wiki/Probabilistic_method  probabilistic method]
* The [http://en.wikipedia.org/wiki/Lov%C3%A1sz_local_lemma  Lovász local lemma]  and the [http://en.wikipedia.org/wiki/Algorithmic_Lov%C3%A1sz_local_lemma algorithmic Lovász local lemma]
* [http://en.wikipedia.org/wiki/Markov_chain Markov chain]:
::[http://en.wikipedia.org/wiki/Markov_chain#Reducibility reducibility], [http://en.wikipedia.org/wiki/Markov_chain#Periodicity Periodicity], [http://en.wikipedia.org/wiki/Markov_chain#Steady-state_analysis_and_limiting_distributions stationary distribution], [http://en.wikipedia.org/wiki/Hitting_time hitting time], cover time;
::[http://en.wikipedia.org/wiki/Markov_chain_mixing_time mixing time], [http://en.wikipedia.org/wiki/Conductance_(probability) conductance]

Revision as of 11:26, 9 April 2014

Problem 1

Prove the following identity:

  • [math]\displaystyle{ \sum_{k=1}^n k{n\choose k}= n2^{n-1} }[/math].

(Hint: Use double counting.)

Problem 2

(Erdős-Spencer 1974)

Let [math]\displaystyle{ n }[/math] coins of weights 0 and 1 be given. We are also given a scale with which we may weigh any subset of the coins. Our goal is to determine the weights of coins (that is, to known which coins are 0 and which are 1) with the minimal number of weighings.

This problem can be formalized as follows: A collection [math]\displaystyle{ S_1,S_1,\ldots,S_m\subseteq [n] }[/math] is called determining if an arbitrary subset [math]\displaystyle{ T\subseteq[n] }[/math] can be uniquely determined by the cardinalities [math]\displaystyle{ |S_i\cap T|, 1\le i\le m }[/math].

  • Prove that if there is a determining collection [math]\displaystyle{ S_1,S_1,\ldots,S_m\subseteq [n] }[/math], then there is a way to determine the weights of [math]\displaystyle{ n }[/math] coins with [math]\displaystyle{ m }[/math] weighings.
  • Use pigeonhole principle to show that if a collection [math]\displaystyle{ S_1,S_1,\ldots,S_m\subseteq [n] }[/math] is determining, then it must hold that [math]\displaystyle{ m\ge \frac{n}{\log_2(n+1)} }[/math].

(This gives a lower bound for the number of weighings required to determine the weights of [math]\displaystyle{ n }[/math] coins.)


Problem 3

A set of vertices [math]\displaystyle{ D\subseteq V }[/math] of graph [math]\displaystyle{ G(V,E) }[/math] is a dominating set if for every [math]\displaystyle{ v\in V }[/math], it holds that [math]\displaystyle{ v\in D }[/math] or [math]\displaystyle{ v }[/math] is adjacent to a vertex in [math]\displaystyle{ D }[/math]. The problem of computing minimum dominating set is NP-hard.

  • Prove that for every [math]\displaystyle{ d }[/math]-regular graph with [math]\displaystyle{ n }[/math] vertices, there exists a dominating set with size at most [math]\displaystyle{ \frac{n(1+\ln(d+1))}{d+1} }[/math].
  • Try to obtain an upper bound for the size of dominating set using Lovász Local Lemma. Is it better or worse than previous one?

Problem 4

Let [math]\displaystyle{ H(W,F) }[/math] be a graph and [math]\displaystyle{ n\gt |W| }[/math] be an integer. It is known that for some graph [math]\displaystyle{ G(V,E) }[/math] such that [math]\displaystyle{ |V|=n }[/math], [math]\displaystyle{ |E|=m }[/math], [math]\displaystyle{ G }[/math] does not contain [math]\displaystyle{ H }[/math] as a subgraph. Prove that for [math]\displaystyle{ k\gt \frac{n^2\ln n}{m} }[/math], there is an edge [math]\displaystyle{ k }[/math]-coloring for [math]\displaystyle{ K_n }[/math] that [math]\displaystyle{ K_n }[/math] contains no monochromatic [math]\displaystyle{ H }[/math].

Remark: Let [math]\displaystyle{ E=\binom{V}{2} }[/math] be the edge set of [math]\displaystyle{ K_n }[/math]. "An edge [math]\displaystyle{ k }[/math]-coloring for [math]\displaystyle{ K_n }[/math]" is a mapping [math]\displaystyle{ f:E\to[k] }[/math].

Problem 5

Let [math]\displaystyle{ G(V,E) }[/math] be a cycle of length [math]\displaystyle{ k\cdot n }[/math] and let [math]\displaystyle{ V=V_1\cup V_2\cup\dots V_n }[/math] be a partition of its [math]\displaystyle{ k\cdot n }[/math] vertices into [math]\displaystyle{ n }[/math] pairwise disjoint subsets, each of cardinality [math]\displaystyle{ k }[/math]. For [math]\displaystyle{ k\ge 11 }[/math], show that there must be an independent set of [math]\displaystyle{ G }[/math] containing precisely one vertex from each [math]\displaystyle{ V_i }[/math].

Hint: you can use Lovász Local Lemma.