随机算法 (Spring 2014)/Problem Set 4

From TCS Wiki
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Problem 1

A proper [math]\displaystyle{ q }[/math]-coloring of a graph [math]\displaystyle{ G(V,E) }[/math] is a mapping [math]\displaystyle{ f:V\to [q] }[/math] such that for any edge [math]\displaystyle{ uv\in E }[/math] we have [math]\displaystyle{ f(u)\neq f(v) }[/math].

Consider the following Markov chain for proper [math]\displaystyle{ q }[/math]-colorings of a graph [math]\displaystyle{ G(V,E) }[/math] whose maximum degree is [math]\displaystyle{ \Delta }[/math]:

Markov Chain for Graph Coloring
Start with a proper [math]\displaystyle{ q }[/math]-coloring of [math]\displaystyle{ G(V,E) }[/math]. At each step:
  1. Pick a vertex [math]\displaystyle{ v\in V }[/math] and a color [math]\displaystyle{ c\in[q] }[/math] uniformly at random.
  2. Change the color of [math]\displaystyle{ v }[/math] to [math]\displaystyle{ c }[/math] if the resulting coloring is proper; do nothing if otherwise.

Show that the Markov chain is:

  1. ergodic (i.e., aperiodic);
  2. irreducible if [math]\displaystyle{ q\ge \Delta+2 }[/math];
  3. with uniform stationary distribution.

Problem 2

Let [math]\displaystyle{ G(V,E) }[/math] be an undirected connected graph with known maximum degree [math]\displaystyle{ \Delta }[/math]. You want to design random walks over the vertices in [math]\displaystyle{ V }[/math] such that at each step only adjacent vertices are allowed to walk to (i.e., the transition matrix [math]\displaystyle{ P }[/math] is defined on [math]\displaystyle{ V\times V }[/math] and [math]\displaystyle{ P(u,v)\gt 0 }[/math] only if [math]\displaystyle{ uv\in E }[/math]). You are allowed to design the transition matrix [math]\displaystyle{ P }[/math] for your random walk to achieve certain stationary distributions.

  • Suppose that [math]\displaystyle{ G }[/math] is not necessarily regular (every vertex has the same degree). Design a time-reversible lazy random walk which is ergodic and always converges to uniform stationary distribution.
  • Given an arbitrary distribution [math]\displaystyle{ \pi }[/math] over [math]\displaystyle{ V }[/math], design a time-reversible lazy random walk which is ergodic and always converges to the stationary distribution [math]\displaystyle{ \pi }[/math].
  • (bonus question) Try to give sufficient conditions in terms of [math]\displaystyle{ G }[/math] and [math]\displaystyle{ \pi }[/math] for the rapid mixing of the above two random walks.

Problem 3

Let [math]\displaystyle{ G(V,E) }[/math] be a connected undirected simple graph (no self-loops and parallel edges) defined on [math]\displaystyle{ n }[/math] vertices. Let [math]\displaystyle{ \phi(G) }[/math] be the expansion ratio of [math]\displaystyle{ G }[/math]. [math]\displaystyle{ G }[/math] is NOT necessarily regular. For any [math]\displaystyle{ v\in V }[/math], let [math]\displaystyle{ d_v }[/math] be the degree of vertex [math]\displaystyle{ v }[/math].

  • What is the largest possible value for [math]\displaystyle{ \phi(G) }[/math]? Construct a graph [math]\displaystyle{ G }[/math] with this expansion ratio and explain why it is the largest.
  • What is the smallest possible value for [math]\displaystyle{ \phi(G) }[/math]? Construct a graph [math]\displaystyle{ G }[/math] with this expansion ratio and explain why it is the smallest.
  • Run a lazy random walk on [math]\displaystyle{ G }[/math]. What is the stationary distribution? Starting from an arbitrary vertex in an arbitrary unknown [math]\displaystyle{ G }[/math], how long in the worst case should you run the random walk to guarantee the distribution of the current position is within a total variation distance of [math]\displaystyle{ \epsilon }[/math] from the stationary distribution? Give an upper bound of the time in terms of [math]\displaystyle{ n }[/math] and [math]\displaystyle{ \epsilon }[/math].
  • Suppose that the maximum degree of [math]\displaystyle{ G }[/math] is known but the graph is not necessarily regular. Design a random walk on [math]\displaystyle{ G }[/math] with uniform stationary distribution. How long should you run the random walk to be within [math]\displaystyle{ \epsilon }[/math]-close to the uniform distribution in the worst case?