Molecular symmetry and 组合数学 (Fall 2017)/Problem Set 1: Difference between pages

From TCS Wiki
(Difference between pages)
Jump to navigation Jump to search
imported>Macdonald-ross
(bit shorter)
 
imported>Etone
No edit summary
 
Line 1: Line 1:
{{complex|date=January 2012}}
*每道题目的解答都要有<font color="red" size=4>完整的解题过程</font>。中英文不限。


'''Molecular symmetry''' is a basic idea in [[chemistry]]. It is about the [[symmetry]] of [[molecule]]s. It puts molecules into groups according to their symmetry. It can [[predict]] or explain many of a molecule's [[chemical property|chemical properties]].<ref>''Quantum Chemistry'', Third Edition John P. Lowe, Kirk Peterson ISBN 012457551X</ref><ref>''Physical Chemistry: A Molecular Approach'' by Donald A. McQuarrie, John D. Simon ISBN 0935702997</ref><ref>''The chemical bond'' 2nd Ed. J.N. Murrell, S.F.A. Kettle, J.M. Tedder ISBN 047190760X</ref><ref>''Physical Chemistry'' P. W. Atkins ISBN 0716728710</ref><ref>G. L. Miessler and D. A. Tarr “Inorganic Chemistry” 3rd Ed, Pearson/Prentice Hall publisher, ISBN 0-13-035471-6.</ref>  
== Problem 1 ==
#有<math>k</math>种不同的明信片,每种明信片有无限多张,寄给<math>n</math>个人,每人一张,有多少种方法?
#有<math>k</math>种不同的明信片,每种明信片有无限多张,寄给<math>n</math>个人,每人一张,每个人必须收到不同种类的明信片,有多少种方法?
#有<math>k</math>种不同的明信片,每种明信片有无限多张,寄给<math>n</math>个人,每人收到<math>r</math>张不同的明信片(但不同的人可以收到相同的明信片),有多少种方法?
#只有一种明信片,共有<math>m</math>张,寄给<math>n</math>个人,全部寄完,每个人可以收多张明信片或者不收明信片,有多少种方法?
#有<math>k</math>种不同的明信片,其中第<math>i</math>种明信片有<math>m_i</math>张,寄给<math>n</math>个人,全部寄完,每个人可以收多张明信片或者不收明信片,有多少种方法?


Chemists study symmetry to explain how [[crystal]]s are made up and how [[chemical reaction|chemicals react]]. The molecular symmetry of the [[reactant]]s help predict how the product of the reaction is made up and the [[Activation energy|energy]] needed for the reaction.
== Problem 2 ==
Find the number of ways to select <math>2n</math> balls from <math>n</math> identical blue balls, <math>n</math> identical red balls and <math>n</math> identical green balls.
* Give a combinatorial proof for the problem.
* Give an algebraic proof for the problem.


Molecular symmetry can be studied several different ways. [[Group theory]] is the most popular idea. Group theory is also useful in studying the symmetry of [[molecular orbital]]s. This is used in the [[Hückel method]], [[ligand field theory]], and the [[Woodward–Hoffmann rules]]. Another idea on a larger scale is the use of [[crystal system]]s to describe [[crystallography|crystallographic]] symmetry in bulk materials.
== Problem 3 ==
*一个长度为<math>n</math>的“山峦”是如下由<math>n</math>个"/"和<math>n</math>个"\"组成的,从坐标<math>(0,0)</math>到<math>(0,2n)</math>的折线,但任何时候都不允许低于<math>x</math>轴。例如下图:
Scientists find molecular symmetry by using [[X-ray crystallography]] and other forms of [[spectroscopy]]. [[Spectroscopic notation]] is based on facts taken from molecular symmetry.


== Historical background ==
    /\
Physicist [[Hans Bethe]] used characters of point group operations in his study of [[ligand field theory]] in 1929. [[Eugene Wigner]] used group theory to explain the selection rules of [[atomic spectroscopy]].<ref>''Group Theory and its application to the quantum mechanics of atomic spectra'', E. P. Wigner, Academic Press Inc. (1959)</ref> The first character tables were compiled by [[László Tisza]] (1933), in connection to vibrational spectra. [[Robert Mulliken]] was the first to publish character tables in English (1933). [[E. Bright Wilson]] used them in 1934 to predict the symmetry of vibrational [[normal mode]]s.<ref>''Correcting Two Long-Standing Errors in Point Group Symmetry Character Tables'' Randall B. Shirts [[J. Chem. Educ.]] 2007, 84, 1882. [http://jchemed.chem.wisc.edu/Journal/Issues/2007/Nov/abs1882.html Abstract]</ref> The complete set of 32 crystallographic point groups was published in 1936 by Rosenthal and Murphy.<ref>''Group Theory and the Vibrations of Polyatomic Molecules'' Jenny E. Rosenthal and G. M. Murphy Rev. Mod. Phys. 8, 317 - 346 (1936) {{DOI|10.1103/RevModPhys.8.317}}</ref>
  / \/\/\    /\/\
==Symmetry concepts==
  /       \/\/   \/\/\
Mathematical [[group theory]] has been adapted to study of symmetry in molecules.
  ----------------------
:长度为<math>n</math>的“山峦”有多少?
=== Elements ===
The symmetry of a molecule can be described by 5 types of [[symmetry element]]s.
[[File:Vannmolekyl.png|thumb|100px|right|Water molecule is symmetrical]]
* '''Symmetry axis''': an axis around which a [[rotation]] by <math> \tfrac{360^\circ} {n} </math> results in a molecule that appears identical to the molecule before rotation. This is also called an ''n''-fold '''rotational axis''' and is shortened to C<sub>n</sub>. Examples are the C<sub>2</sub> in [[water]] and the C<sub>3</sub> in [[ammonia]]. A molecule can have more than one symmetry axis; the one with the highest ''n'' is called the '''principal axis''', and by convention is given the z-axis in a [[Cartesian coordinate system]].
* '''Plane of symmetry''': a plane of reflection through which an identical copy of the original molecule is given. This is also called a [[mirror plane]] and abbreviated [[Sigma|σ]]. Water has two of them: one in the plane of the molecule itself and one [[perpendicular]] (at right angles) to it. A symmetry plane [[Parallel (geometry)|parallel]] with the principal axis is dubbed ''vertical'' (σ<sub>v</sub>) and one perpendicular to it ''horizontal'' (σ<sub>h</sub>). A third type of symmetry plane exists: if a vertical symmetry plane additionally bisects the angle between two 2-fold rotation axes perpendicular to the principal axis, the plane is dubbed [[Dihedral angle|dihedral]] (σ<sub>d</sub>). A symmetry plane can also be identified by its Cartesian orientation, ''e.g.'', (xz) or (yz).
[[File:Benz1.png|thumb|100px|left|Benzene]]
* '''Center of symmetry''' or '''inversion center''', shortened to ''i''. A molecule has a center of symmetry when, for any atom in the molecule, an identical atom exists diametrically opposite this center an equal distance from it. There may or may not be an atom at the center. Examples are [[xenon tetrafluoride]] (XeF<sub>4</sub>) where the inversion center is at the Xe atom, and [[benzene]] (C<sub>6</sub>H<sub>6</sub>) where the inversion center is at the center of the ring.
* '''Rotation-reflection axis''': an axis around which a  rotation by <math> \tfrac{360^\circ} {n} </math>, followed by a reflection in a plane perpendicular to it, leaves the molecule unchanged. Also called  an ''n''-fold '''improper rotation axis''', it is shortened to S<sub>n</sub>, with ''n'' necessarily even. Examples are present in tetrahedral [[silicon tetrafluoride]], with three S<sub>4</sub> axes, and the [[staggered conformation]] of [[ethane]] with one S<sub>6</sub> axis.
* '''Identity''' (also '''E'''), from the German 'Einheit' meaning Unity.<ref>[http://dict.leo.org/ende?lp=ende&lang=de&searchLoc=0&cmpType=relaxed&sectHdr=on&spellToler=on&search=einheit&relink=on LEO Ergebnisse für "einheit"<!-- Bot generated title -->]</ref> It is called "Identity" because it is like the number one (unity) in multiplication. (When a number is multiplied by one, the answer is the original number.) This symmetry element means no change. Every molecule has this element. The identity symmetry element helps chemists use mathematical group theory.


=== Operations ===
*一个长度为<math>n</math>的“地貌”是由<math>n</math>个"/"和<math>n</math>个"\"组成的,从坐标<math>(0,0)</math>到<math>(0,2n)</math>的折线,允许低于<math>x</math>轴。长度为<math>n</math>的“地貌”有多少?
Each of the five symmetry elements has a '''[[symmetry operation]]'''. People use a [[caret]] symbol (^) to talk about the operation rather than the symmetry element. So, Ĉ<sub>n</sub> is the rotation of a molecule around an axis and Ê is the identity operation. A symmetry element can have more than one symmetry operation associated with it. Since C<sub>1</sub> is equivalent to E, S<sub>1</sub> to σ and S<sub>2</sub> to ''i'',  all symmetry operations can be classified as either proper or improper rotations.


== Point groups ==
== Problem 4==
李雷和韩梅梅竞选学生会主席,韩梅梅获得选票 <math>p</math> 张,李雷获得选票 <math>q</math> 张,<math>p>q</math>。我们将总共的 <math>p+q</math> 张选票一张一张的点数,有多少种选票的排序方式使得在整个点票过程中,韩梅梅的票数一直高于李雷的票数?等价地,假设选票均匀分布的随机排列,以多大概率在整个点票过程中,韩梅梅的票数一直高于李雷的票数。


A [[point group]] is a set of symmetry operations forming a mathematical ''[[group (mathematics)|group]]'', for which at least one ''point'' remains fixed under all operations of the group. A [[crystallographic point group]] is a point group which will work with translational symmetry in three dimensions. There are a total of 32 crystallographic  point groups, 30 of which are relevant to chemistry. Scientists use [[Schoenflies notation]] to classify point groups.  
==Problem 5==
A <math>2\times n</math> rectangle is to be paved with <math>1\times 2</math> identical blocks and <math>2\times 2</math> identical blocks. Let <math>f(n)</math> denote the number of ways that can be done. Find a recurrence relation for <math>f(n)</math>, solve the recurrence relation.


=== Group theory ===
== Problem 6 ==
* 令<math>s_n</math>表示长度为<math>n</math>,没有2个连续的1的二进制串的数量,即
*:<math>s_n=|\{x\in\{0,1\}^n\mid \forall 1\le i\le n-1, x_ix_{i+1}\neq 11\}|</math>。
:求 <math>s_n</math>。


Mathematics define a ''[[Group (mathematics)|group]]''. A set of symmetry operations form a group when:
*<math>t_n</math>表示长度为<math>n</math>,没有3个连续的1的二进制串的数量,即
* the result of consecutive application (composition) of any two operations is also a member of the group (closure).
*:<math>t_n=|\{x\in\{0,1\}^n\mid \forall 1\le i\le n-2, x_ix_{i+1}x_{i+2}\neq 111\}|</math>
* the application of the operations is [[Associativity|associative]]: A(BC) = (AB)C
*#给出计算<math>t_n</math>的递归式,并给出足够的初始值。
* the group contains the [[identity element|identity operation]], denoted E, such that AE = EA = A for any operation A in the group.
*#计算<math>t_n</math>的生成函数<math>T(x)=\sum_{n\ge 0}t_n x^n</math>,给出生成函数<math>T(x)</math>的闭合形式。
* For every operation A in the group, there is an [[inverse element]] A<sup>−1</sup> in the group, for which AA<sup>−1</sup> = A<sup>−1</sup>A = E
The [[Order (group theory)|order of a group]] is the number of symmetry operations for that group.
For example, the point group for the [[water]] molecule is C<sub>2v</sub>, with symmetry operations E, C<sub>2</sub>, σ<sub>v</sub> and σ<sub>v</sub>'. Its order is thus 4.  Each operation is its own inverse.  As an example of closure, a C<sub>2</sub> rotation followed by a σ<sub>v</sub> reflection is seen to be a σ<sub>v</sub>' symmetry operation: σ<sub>v</sub>*C<sub>2</sub> = σ<sub>v</sub>'. (Note that "Operation A followed by B to form C" is written BA = C).


Another example is the [[ammonia]] molecule, which is pyramidal and contains a three-fold rotation axis as well as three mirror planes at an angle of 120° to each other. Each mirror plane contains an N-H bond and bisects the H-N-H bond angle opposite to that bond. Thus ammonia molecule belongs to the C<sub>3v</sub> point group which has order 6: an identity element E, two rotation operations C<sub>3</sub> and C<sub>3</sub><sup>2</sup>, and three mirror reflections σ<sub>v</sub>, σ<sub>v</sub>' and σ<sub>v</sub>".
注意:只需解生成函数的闭合形式,无需展开。


===Common point groups===
== Problem 7 ==
The following table contains a [[Point groups in three dimensions|list of point groups]] with representative molecules. The description of structure includes common shapes of molecules based on [[VSEPR theory]].
Let <math>a_n</math> be a sequence of numbers satisfying the recurrence relation:
:<math>p a_n+q a_{n-1}+r a_{n-2}=0</math>
{|align="center"  class="wikitable"
with initial condition <math>a_0=s</math> and <math>a_1=t</math>, where <math>p,q,r,s,t</math> are constants such that <math>{p}+q+r=0</math>, <math>p\neq 0</math> and <math>s\neq t</math>. Solve the recurrence relation.
|'''Point group'''
| '''Symmetry elements''' || '''Simple description''', [[Chirality (chemistry)|chiral]] if applicable || '''Illustrative species'''
|-
|C<sub>1</sub> || E || no symmetry, chiral || CFClBrH, [[lysergic acid]]
|-
|C<sub>s</sub> || E σ<sub>h</sub> || planar, no other symmetry || [[thionyl chloride]], [[hypochlorous acid]]
|-
|C<sub>i</sub> || E ''i'' || Inversion center || [[anti conformation|''anti'']]-1,2-dichloro-1,2-dibromoethane
|-
|C<sub>∞v</sub> || E 2C<sub>∞</sub> σ<sub>v</sub> || linear || [[hydrogen chloride]], [[dicarbon monoxide]]
|-
|D<sub>∞h</sub> || E 2C<sub>∞</sub>  ∞σ<sub>i</sub> ''i''  2S<sub>∞</sub> ∞C<sub>2</sub> || linear with inversion center || [[dihydrogen]], [[azide]] anion, [[carbon dioxide]] 
|-
|C<sub>2</sub> || E C<sub>2</sub> || "open book geometry," chiral || [[hydrogen peroxide]]
|-
|C<sub>3</sub> || E C<sub>3</sub> || propeller, chiral || [[triphenylphosphine]]
|-
|C<sub>2h</sub> || E C<sub>2</sub> ''i'' σ<sub>h</sub> || planar with inversion center || [[cis-trans isomerism|trans]]-[[1,2-dichloroethylene]]
|-
|C<sub>3h</sub> || E C<sub>3</sub> C<sub>3</sub><sup>2</sup> σ<sub>h</sub> S<sub>3</sub> S<sub>3</sub><sup>5</sup>|| propeller || [[Boric acid]]
|-
|C<sub>2v</sub> || E C<sub>2</sub> σ<sub>v</sub>(xz) σ<sub>v</sub>'(yz) || angular (H<sub>2</sub>O) or see-saw (SF<sub>4</sub>) || [[water (molecule)|water]], [[sulfur tetrafluoride]], [[sulfuryl fluoride]]
|-
|C<sub>3v</sub> || E 2C<sub>3</sub> 3σ<sub>v</sub> || trigonal pyramidal || [[ammonia]], [[phosphorus oxychloride]]
|-
|C<sub>4v</sub> || E 2C<sub>4</sub> C<sub>2</sub> 2σ<sub>v</sub> 2σ<sub>d</sub> || square pyramidal || [[xenon oxytetrafluoride]]
|-
|D<sub>2</sub> || E C<sub>2</sub>(x) C<sub>2</sub>(y) C<sub>2</sub>(z) || twist, chiral || [[cyclohexane conformation|cyclohexane twist conformation]]
|-
|D<sub>3</sub> || E C<sub>3</sub>(z) 3C<sub>2</sub>|| triple helix, chiral || [[Tris(ethylenediamine)cobalt(III) chloride|Tris(ethylenediamine)cobalt(III) cation]]
|-
|D<sub>2h</sub> || E C<sub>2</sub>(z) C<sub>2</sub>(y) C<sub>2</sub>(x) ''i'' σ(xy) σ(xz) σ(yz)|| planar with inversion center || [[ethylene]], [[dinitrogen tetroxide]], [[diborane]]
|-
|D<sub>3h</sub> || E 2C<sub>3</sub> 3C<sub>2</sub> σ<sub>h</sub> 2S<sub>3</sub> 3σ<sub>v</sub> || trigonal planar or trigonal bipyramidal || [[boron trifluoride]], [[phosphorus pentachloride]]
|-
|D<sub>4h</sub> || E 2C<sub>4</sub> C<sub>2</sub> 2C<sub>2</sub>' 2C<sub>2</sub>'' ''i''  2S<sub>4</sub> σ<sub>h</sub> 2σ<sub>v</sub> 2σ<sub>d</sub> || square planar || [[xenon tetrafluoride]]
|-
|D<sub>5h</sub> || E 2C<sub>5</sub> 2C<sub>5</sub><sup>2</sup> 5C<sub>2</sub> σ<sub>h</sub> 2S<sub>5</sub> 2S<sub>5</sub><sup>3</sup> 5σ<sub>v</sub> || pentagonal || [[ruthenocene]], [[eclipsed conformation|eclipsed]] [[ferrocene]], C<sub>70</sub> [[fullerene]]
|-
|D<sub>6h</sub> || E 2C<sub>6</sub> 2C<sub>3</sub> C<sub>2</sub> 3C<sub>2</sub>' 3C<sub>2</sub> ''i'' 3S<sub>3</sub> 2S<sub>6</sub><sup>3</sup> σ<sub>h</sub> 3σ<sub>d</sub> 3σ<sub>v</sub> || hexagonal || [[benzene]], [[bis(benzene)chromium]]
|-
|D<sub>2d</sub> || E 2S<sub>4</sub> C<sub>2</sub> 2C<sub>2</sub>' 2σ<sub>d</sub> || 90° twist || [[allene]], [[tetrasulfur tetranitride]]
|-
|D<sub>3d</sub> || E C<sub>3</sub> 3C<sub>2</sub> ''i'' 2S<sub>6</sub> 3σ<sub>d</sub> || 60° twist || [[ethane]] (staggered [[rotamer]]), [[cyclohexane conformation|cyclohexane chair conformation]]
|-
|D<sub>4d</sub> || E 2S<sub>8</sub> 2C<sub>4</sub> 2S<sub>8</sub><sup>3</sup> C<sub>2</sub> 4C<sub>2</sub>' 4σ<sub>d</sub> || 45° twist || [[dimanganese decacarbonyl]] (staggered rotamer)
|-
|D<sub>5d</sub> || E 2C<sub>5</sub> 2C<sub>5</sub><sup>2</sup> 5C<sub>2</sub> ''i'' 3S<sub>10</sub><sup>3</sup> 2S<sub>10</sub> 5σ<sub>d</sub> || 36° twist || [[ferrocene]] (staggered rotamer)
|-
|T<sub>d</sub> || E 8C<sub>3</sub> 3C<sub>2</sub> 6S<sub>4</sub> 6σ<sub>d</sub> || [[tetrahedron|tetrahedral]] || [[methane]], [[phosphorus pentoxide]], [[adamantane]]
|-
|O<sub>h</sub> || E 8C<sub>3</sub> 6C<sub>2</sub> 6C<sub>4</sub> 3C<sub>2</sub> ''i'' 6S<sub>4</sub> 8S<sub>6</sub> 3σ<sub>h</sub> 6σ<sub>d</sub> || [[octahedron|octahedral]] or cubic || [[cubane]], [[sulfur hexafluoride]]
|-
|I<sub>h</sub> || E 12C<sub>5</sub> 12C<sub>5</sub><sup>2</sup> 20C<sub>3</sub> 15C<sub>2</sub> ''i'' 12S<sub>10</sub> 12S<sub>10</sub><sup>3</sup> 20S<sub>6</sub> 15σ || [[icosahedron|icosahedral]] || [[fullerene|C<sub>60</sub>]], [[Caesium dodecaborate|B<sub>12</sub>H<sub>12</sub><sup>2-</sup>]]
|- <!--
| colspan=4 align=left style="background: #ccccff;" | ''Table 1. Point groups''
|- -->
|}
 
=== Representations ===
 
Symmetry operations can be [[group representation|written in many ways]]. A good way to write them is by using [[matrix (mathematics)|matrices]]. For any vector representing a point in [[Cartesian coordinates]], [[Matrix multiplication|left-multiplying]] it gives the new place of the point transformed by the symmetry operation. Composition of operations is done by [[matrix multiplication]].  In the C<sub>2v</sub> example this is:
:<math>
\underbrace{
    \begin{bmatrix}
    -1 &  0 & 0 \\
      0 & -1 & 0 \\
    0 &  0 & 1 \\
      \end{bmatrix}
  }_{C_{2}} \times
\underbrace{
  \begin{bmatrix}
    1 &  0 & 0 \\
    0 & -1 & 0 \\
    0 &  0 & 1 \\
  \end{bmatrix}
}_{\sigma_{v}} =  
\underbrace{
  \begin{bmatrix}
  -1 & 0 & 0 \\
    0 & 1 & 0 \\
    0 & 0 & 1 \\
  \end{bmatrix}
}_{\sigma'_{v}}
</math>
Although an infinite (going on forever) number of such representations (ways of showing things) exist, the [[irreducible representation]]s (or "irreps") of the group are commonly used, as all other representations of the group can be described as a [[linear combination]] of the irreducible representations. (The irreps span the [[vector space]] of the symmetry operations.) Chemists use the irreps to sort the symmetry groups and to talk about their properties.
 
== Character tables ==
For each point group, a '''character table''' summarizes information on its symmetry operations and on its irreducible representations. The tables are square because there are always equal numbers of irreducible representations and groups of symmetry operations.
 
The table itself is made of '''characters''' which show how a particular irreducible representation changes when a particular symmetry operation is applied (put to it). Any symmetry operation in a molecule's point group acting on the molecule itself will leave it unchanged. But for acting on a general entity (thing), such as a [[Vector (geometric)|vector]] or an [[Atomic orbital|orbital]], this does not have to be what happens. The vector could change sign or direction, and the orbital could change type. For simple point groups, the values are either 1 or -1: 1 means that the sign or phase (of the vector or orbital) is unchanged by the symmetry operation (''symmetric'') and -1 denotes a sign change (''asymmetric'').
 
The representations are labeled according to a set of conventions:
 
* A, when rotation around the principal axis is symmetrical
* B, when rotation around the principal axis is asymmetrical
* E and T are doubly and triply [[Degeneracy (mathematics)|degenerate]] representations, respectively
* when the point group has an inversion center, the subscript g ({{lang-de|gerade}} or even) signals no change in sign, and the subscript u (''ungerade'' or uneven) a change in sign, with respect to inversion.
* with point groups C<sub>∞v</sub> and D<sub>∞h</sub> the symbols are borrowed from [[angular momentum]] description: [[sigma|Σ]], [[Pi (letter)|Π]], [[Delta (letter)|Δ]].
 
The tables also tell the Cartesian [[basis vector]]s, [[rotation]]s about them, and [[quadratic function]]s of them transformed by the symmetry operations of the group. The table also shows which irreducible representation transforms in the same way (on the right hand side of the tables). Chemists use this because chemically important orbitals (in particular ''p'' and ''d'' orbitals) have the same symmetries as these entities. 
 
The character table for the C<sub>2v</sub> symmetry point group is given below:
 
{| class="wikitable"
! C<sub>2v</sub> || E || C<sub>2</sub> || σ<sub>v</sub>(xz) || σ<sub>v</sub>'(yz) || ||
|-
| A<sub>1</sub> || 1 || 1 || 1 || 1 || ''z''
| ''x''<sup>2</sup>, ''y''<sup>2</sup>, ''z''<sup>2</sup>
|-
| A<sub>2</sub> || 1 || 1 || -1 || -1 || R<sub>z</sub> || ''xy''
|-
| B<sub>1</sub> || 1 || -1 || 1 || -1 || ''x'', R<sub>y</sub> || ''xz''
|-
| B<sub>2</sub> || 1 || -1 || -1 || 1 || ''y'', R<sub>x</sub> || ''yz''
|}
For example, water (H<sub>2</sub>O) which has the C<sub>2v</sub> symmetry described above.  The 2''p''<sub>x</sub> [[atomic orbital|orbital]] of oxygen is oriented perpendicular to the plane of the molecule and switches sign with a C<sub>2</sub> and a σ<sub>v</sub>'(yz) operation, but remains unchanged with the other two operations (obviously, the character for the identity operation is always +1). This orbital's character set is thus {1, -1, 1, -1}, corresponding to the B<sub>1</sub> irreducible representation. Similarly, the 2''p''<sub>z</sub> orbital is seen to have the symmetry of the A<sub>1</sub> irreducible representation, 2''p''<sub>y</sub> B<sub>2</sub>, and the  3''d''<sub>xy</sub> orbital A<sub>2</sub>. These assignments and others are in the rightmost two columns of the table.
 
==References==
{{reflist}}
 
==Other websites==
* [http://www.phys.ncl.ac.uk/staff/njpg/symmetry/ Molecular symmetry at the University of Exeter]{{dead link|date=January 2012}}
* [http://www.ch.ic.ac.uk/local/symmetry/ Molecular symmetry at Imperial College London]
* [http://www.webqc.org/symmetry.php Molecular Point Group Symmetry Tables]
* [http://symmetry.otterbein.edu/ Molecular symmetry at Otterbein University]
*[http://newton.ex.ac.uk/research/qsystems/people/goss/symmetry/Solids.html Pictorial overview of the 32 groups]
 
[[Category:Symmetry]]
[[Category:Theoretical chemistry]]

Revision as of 13:14, 17 September 2017

  • 每道题目的解答都要有完整的解题过程。中英文不限。

Problem 1

  1. [math]\displaystyle{ k }[/math]种不同的明信片,每种明信片有无限多张,寄给[math]\displaystyle{ n }[/math]个人,每人一张,有多少种方法?
  2. [math]\displaystyle{ k }[/math]种不同的明信片,每种明信片有无限多张,寄给[math]\displaystyle{ n }[/math]个人,每人一张,每个人必须收到不同种类的明信片,有多少种方法?
  3. [math]\displaystyle{ k }[/math]种不同的明信片,每种明信片有无限多张,寄给[math]\displaystyle{ n }[/math]个人,每人收到[math]\displaystyle{ r }[/math]张不同的明信片(但不同的人可以收到相同的明信片),有多少种方法?
  4. 只有一种明信片,共有[math]\displaystyle{ m }[/math]张,寄给[math]\displaystyle{ n }[/math]个人,全部寄完,每个人可以收多张明信片或者不收明信片,有多少种方法?
  5. [math]\displaystyle{ k }[/math]种不同的明信片,其中第[math]\displaystyle{ i }[/math]种明信片有[math]\displaystyle{ m_i }[/math]张,寄给[math]\displaystyle{ n }[/math]个人,全部寄完,每个人可以收多张明信片或者不收明信片,有多少种方法?

Problem 2

Find the number of ways to select [math]\displaystyle{ 2n }[/math] balls from [math]\displaystyle{ n }[/math] identical blue balls, [math]\displaystyle{ n }[/math] identical red balls and [math]\displaystyle{ n }[/math] identical green balls.

  • Give a combinatorial proof for the problem.
  • Give an algebraic proof for the problem.

Problem 3

  • 一个长度为[math]\displaystyle{ n }[/math]的“山峦”是如下由[math]\displaystyle{ n }[/math]个"/"和[math]\displaystyle{ n }[/math]个"\"组成的,从坐标[math]\displaystyle{ (0,0) }[/math][math]\displaystyle{ (0,2n) }[/math]的折线,但任何时候都不允许低于[math]\displaystyle{ x }[/math]轴。例如下图:
   /\
  /  \/\/\    /\/\
 /        \/\/    \/\/\
 ----------------------
长度为[math]\displaystyle{ n }[/math]的“山峦”有多少?
  • 一个长度为[math]\displaystyle{ n }[/math]的“地貌”是由[math]\displaystyle{ n }[/math]个"/"和[math]\displaystyle{ n }[/math]个"\"组成的,从坐标[math]\displaystyle{ (0,0) }[/math][math]\displaystyle{ (0,2n) }[/math]的折线,允许低于[math]\displaystyle{ x }[/math]轴。长度为[math]\displaystyle{ n }[/math]的“地貌”有多少?

Problem 4

李雷和韩梅梅竞选学生会主席,韩梅梅获得选票 [math]\displaystyle{ p }[/math] 张,李雷获得选票 [math]\displaystyle{ q }[/math] 张,[math]\displaystyle{ p\gt q }[/math]。我们将总共的 [math]\displaystyle{ p+q }[/math] 张选票一张一张的点数,有多少种选票的排序方式使得在整个点票过程中,韩梅梅的票数一直高于李雷的票数?等价地,假设选票均匀分布的随机排列,以多大概率在整个点票过程中,韩梅梅的票数一直高于李雷的票数。

Problem 5

A [math]\displaystyle{ 2\times n }[/math] rectangle is to be paved with [math]\displaystyle{ 1\times 2 }[/math] identical blocks and [math]\displaystyle{ 2\times 2 }[/math] identical blocks. Let [math]\displaystyle{ f(n) }[/math] denote the number of ways that can be done. Find a recurrence relation for [math]\displaystyle{ f(n) }[/math], solve the recurrence relation.

Problem 6

  • [math]\displaystyle{ s_n }[/math]表示长度为[math]\displaystyle{ n }[/math],没有2个连续的1的二进制串的数量,即
    [math]\displaystyle{ s_n=|\{x\in\{0,1\}^n\mid \forall 1\le i\le n-1, x_ix_{i+1}\neq 11\}| }[/math]
[math]\displaystyle{ s_n }[/math]
  • [math]\displaystyle{ t_n }[/math]表示长度为[math]\displaystyle{ n }[/math],没有3个连续的1的二进制串的数量,即
    [math]\displaystyle{ t_n=|\{x\in\{0,1\}^n\mid \forall 1\le i\le n-2, x_ix_{i+1}x_{i+2}\neq 111\}| }[/math]
    1. 给出计算[math]\displaystyle{ t_n }[/math]的递归式,并给出足够的初始值。
    2. 计算[math]\displaystyle{ t_n }[/math]的生成函数[math]\displaystyle{ T(x)=\sum_{n\ge 0}t_n x^n }[/math],给出生成函数[math]\displaystyle{ T(x) }[/math]的闭合形式。

注意:只需解生成函数的闭合形式,无需展开。

Problem 7

Let [math]\displaystyle{ a_n }[/math] be a sequence of numbers satisfying the recurrence relation:

[math]\displaystyle{ p a_n+q a_{n-1}+r a_{n-2}=0 }[/math]

with initial condition [math]\displaystyle{ a_0=s }[/math] and [math]\displaystyle{ a_1=t }[/math], where [math]\displaystyle{ p,q,r,s,t }[/math] are constants such that [math]\displaystyle{ {p}+q+r=0 }[/math], [math]\displaystyle{ p\neq 0 }[/math] and [math]\displaystyle{ s\neq t }[/math]. Solve the recurrence relation.