高级算法 (Fall 2018)/Problem Set 1

From TCS Wiki
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
每道题目的解答都要有完整的解题过程、分析和证明。中英文不限。


Problem 1

Recall that in class we show by the probabilistic method how to deduce a [math]\displaystyle{ \frac{n(n-1)}{2} }[/math] upper bound on the number of distinct min-cuts in any multigraph [math]\displaystyle{ G }[/math] with [math]\displaystyle{ n }[/math] vertices from the [math]\displaystyle{ \frac{2}{n(n-1)} }[/math] lower bound for success probability of Karger's min-cut algorithm.

Also recall that the [math]\displaystyle{ FastCut }[/math] algorithm taught in class guarantees to return a min-cut with probability at least [math]\displaystyle{ \Omega(1/\log n) }[/math]. Does this imply a much tighter [math]\displaystyle{ O(\log n) }[/math] upper bound on the number of distinct min-cuts in any multigraph [math]\displaystyle{ G }[/math] with [math]\displaystyle{ n }[/math] vertices? Prove your improved upper bound if your answer is "yes", and give a satisfactory explanation if your answer is "no".

Problem 2

Two rooted trees [math]\displaystyle{ T_1 }[/math] and [math]\displaystyle{ T_2 }[/math] are said to be isomorphic if there exists a bijection [math]\displaystyle{ \phi }[/math] that maps vertices of [math]\displaystyle{ T_1 }[/math] to those of [math]\displaystyle{ T_2 }[/math] satisfying the following condition: for each internal vertex [math]\displaystyle{ v }[/math] of [math]\displaystyle{ T_1 }[/math] with children [math]\displaystyle{ u_1,u_2,\ldots, u_k }[/math], the set of children of vertex [math]\displaystyle{ \phi(v) }[/math] in [math]\displaystyle{ T_2 }[/math] is precisely [math]\displaystyle{ \{\phi(u_1), \phi(u_2),\ldots,\phi(u_k)\} }[/math], no ordering among children assumed.

Give an efficient randomized algorithm with bounded one-sided error (false positive), for testing isomorphism between rooted trees with [math]\displaystyle{ n }[/math] vertices. Analyze your algorithm.

Problem 3

Fix a universe [math]\displaystyle{ U }[/math] and two subset [math]\displaystyle{ A,B \subseteq U }[/math], both with size [math]\displaystyle{ n }[/math]. we create both Bloom filters [math]\displaystyle{ F_A }[/math]([math]\displaystyle{ F_B }[/math]) for [math]\displaystyle{ A }[/math] ([math]\displaystyle{ B }[/math]), using the same number of bits [math]\displaystyle{ m }[/math] and the same [math]\displaystyle{ k }[/math] hash functions.

  • Let [math]\displaystyle{ F_C = F_A \and F_B }[/math] be the Bloom filter formed by computing the bitwise AND of [math]\displaystyle{ F_A }[/math] and [math]\displaystyle{ F_B }[/math]. Argue that [math]\displaystyle{ F_C }[/math] may not always be the same as the Bloom filter that are created for [math]\displaystyle{ A\cap B }[/math].
  • Bloom filters can be used to estimate set differences. Express the expected number of bits where [math]\displaystyle{ F_A }[/math] and [math]\displaystyle{ F_B }[/math] differ as a function of [math]\displaystyle{ m, n, k }[/math] and [math]\displaystyle{ |A\cap B| }[/math].