组合数学 (Fall 2019) and 组合数学 (Fall 2019)/Problem Set 4: Difference between pages

From TCS Wiki
(Difference between pages)
Jump to navigation Jump to search
imported>Etone
 
imported>Etone
No edit summary
 
Line 1: Line 1:
{{Infobox
== Problem 1 ==
|name        = Infobox
(Matching vs. Star)
|bodystyle    =  
|title        = <font size=3>组合数学  <br>
Combinatorics</font>
|titlestyle  =


|image        =
Given a graph <math>G(V,E)</math>, a ''matching'' is a subset <math>M\subseteq E</math> of edges such that there are no two edges in <math>M</math> sharing a vertex, and a ''star'' is a subset <math>S\subseteq E</math> of edges such that every pair <math>e_1,e_2\in S</math> of distinct edges in <math>S</math> share the same vertex <math>v</math>.
|imagestyle  =
|caption      =
|captionstyle =
|headerstyle  = background:#ccf;
|labelstyle  = background:#ddf;
|datastyle    =


|header1 =Instructor
Prove that any graph <math>G</math> containing more than <math>2(k-1)^2</math> edges either contains a matching of size <math>k</math> or a star of size <math>k</math>.
|label1  =
|data1  =
|header2 =
|label2  =
|data2  = 尹一通
|header3 =
|label3  = Email
|data3  = yitong.yin@gmail.com  yinyt@nju.edu.cn 
|header4 =
|label4= office
|data4= 计算机系 804
|header5 = Class
|label5  =
|data5  =
|header6 =
|label6  = Class meetings
|data6  = Wednesday, 2pm-4pm <br> 仙I-319
|header7 =
|label7  = Place
|data7  =
|header8 =
|label8  = Office hours
|data8  = Wednesday, 4pm-6pm <br>计算机系 804
|header9 = Textbook
|label9  =
|data9  =
|header10 =
|label10  =
|data10  = [[File:LW-combinatorics.jpeg|border|100px]]
|header11 =
|label11  =
|data11  = van Lint and Wilson. <br> ''A course in Combinatorics, 2nd ed.'', <br> Cambridge Univ Press, 2001.
|header12 =
|label12  =
|data12  = [[File:Jukna_book.jpg|border|100px]]
|header13 =
|label13  =
|data13  = Jukna. ''Extremal Combinatorics: <br> With Applications in Computer Science,<br>2nd ed.'', Springer, 2011.
|belowstyle = background:#ddf;
|below =
}}


This is the webpage for the ''Combinatorics'' class of fall 2019. Students who take this class should check this page periodically for content updates and new announcements.  
(Hint: Learn from the proof of Erdos-Rado's sunflower lemma.)


= Announcement =
== Problem 2 ==
* (2019/9/6) 第一课的lecture notes和slides已经发布。
(Frankl 1986)
* (2019/10/21)外网数学符号显示已经正常。
* (2019/11/04)<font color=red size=4>11月6日按原定计划上习题课。教服系统中的“停课”指的是:正常新内容的授课暂停一次,原授课时间段改为上习题课。</font>


= Course info =
Let <math>\mathcal{F}\subseteq {[n]\choose k}</math> be a <math>k</math>-uniform family, and suppose that it satisfies that <math>A\cap B \not\subset C</math> for any <math>A,B,C\in\mathcal{F}</math>.
* '''Instructor ''': 尹一通 ([http://tcs.nju.edu.cn/yinyt/ homepage])
* Fix any <math>B\in\mathcal{F}</math>. Show that the family <math>\{A\cap B\mid A\in\mathcal{F}, A\neq B\}</math> is an anti chain.
:*email: yinyt@nju.edu.cn
* Show that <math>|\mathcal{F}|\le 1+{k\choose \lfloor k/2\rfloor}</math>.
:*office: 804
* '''Teaching assistant''': 陈海敏 ([mailto:ichenhm@gmail.com email], [http://tcs.nju.edu.cn/files/people/haimin/ homepage]),蒋圣翊 ([mailto:shengyi.jiang@outlook.com email], [http://www.lamda.nju.edu.cn/jiangsy/ homepage])
* '''Class meeting''': Wednesday, 2pm-4pm, 仙I-319.
* '''Office hour''': Wednesday, 4pm-6pm, 计算机系 804.


= Syllabus =
==Problem 3 ==
An <math>n</math>-player tournament (竞赛图) <math>T([n],E)</math> is said to be '''transitive''', if there exists a permutation <math>\pi</math> of <math>[n]</math> such that <math>\pi_i<\pi_j</math> for every <math>(i,j)\in E</math>.


=== 先修课程 Prerequisites ===
Show that for any <math>k\ge 3</math>, there exists a finite <math>N(k)</math> such that every tournament of <math>n\ge N(k)</math> players contains a transitive sub-tournament of <math>k</math> players. Express <math>N(k)</math> in terms of Ramsey number.
* 离散数学(Discrete Mathematics)
* 线性代数(Linear Algebra)
* 概率论(Probability Theory)


=== Course materials ===
==Problem 4==
* [[组合数学 (Fall 2019)/Course materials|<font size=3>教材和参考书清单</font>]]
We color each non-empty subset of <math>[n]=\{1,2,\ldots,n\}</math> with one of the <math>r</math> colors in <math>[r]</math>. Show that for any finite <math>r</math> there is a finite <math>N</math> such that for all <math>n\ge </math>$, for any <math>r</math>-coloring of all non-empty subsets of <math>[n]</math>, there always exist <math>1\le i<j<k\le n</math> such that the intervals <math>[i,j)=\{i,i+1,\ldots, j-1\}</math>, <math>[j,k)=\{j,j+1,\ldots, k-1\}</math> and <math>[i,k)=\{i,i+1,\ldots, k-1\}</math> are all assigned with the same color by the <math>r</math>-coloring.
 
=== 成绩 Grades ===
* 课程成绩:本课程将会有若干次作业和一次期末考试。最终成绩将由平时作业成绩 (≥ 60%) 和期末考试成绩 (≤ 40%) 综合得出。
* 迟交:如果有特殊的理由,无法按时完成作业,请提前联系授课老师,给出正当理由。否则迟交的作业将不被接受。
 
=== <font color=red> 学术诚信 Academic Integrity </font>===
学术诚信是所有从事学术活动的学生和学者最基本的职业道德底线,本课程将不遗余力的维护学术诚信规范,违反这一底线的行为将不会被容忍。
 
作业完成的原则:署你名字的工作必须是你个人的贡献。在完成作业的过程中,允许讨论,前提是讨论的所有参与者均处于同等完成度。但关键想法的执行、以及作业文本的写作必须独立完成,并在作业中致谢(acknowledge)所有参与讨论的人。不允许其他任何形式的合作——尤其是与已经完成作业的同学“讨论”。
 
本课程将对剽窃行为采取零容忍的态度。在完成作业过程中,对他人工作(出版物、互联网资料、其他人的作业等)直接的文本抄袭和对关键思想、关键元素的抄袭,按照 [http://www.acm.org/publications/policies/plagiarism_policy ACM Policy on Plagiarism]的解释,都将视为剽窃。剽窃者成绩将被取消。如果发现互相抄袭行为,<font color=red> 抄袭和被抄袭双方的成绩都将被取消</font>。因此请主动防止自己的作业被他人抄袭。
 
学术诚信影响学生个人的品行,也关乎整个教育系统的正常运转。为了一点分数而做出学术不端的行为,不仅使自己沦为一个欺骗者,也使他人的诚实努力失去意义。让我们一起努力维护一个诚信的环境。
 
= Assignments =
*[[组合数学 (Fall 2019)/Problem Set 1|Problem Set 1]]  due on Sept 25, in class. [[组合数学 (Fall 2019)/作业1已提交名单 | 当前作业1已提交名单]].
*[[组合数学 (Fall 2019)/Problem Set 2|Problem Set 2]]  due on Oct 23, in class. [[组合数学 (Fall 2019)/作业2已提交名单 | 当前作业2已提交名单]].
*[[组合数学 (Fall 2019)/Problem Set 3|Problem Set 3]]  due on Dec 4, in class.
 
= Lecture Notes =
# [[组合数学 (Fall 2019)/Basic enumeration|Basic enumeration | 基本计数]] ( [http://tcs.nju.edu.cn/slides/comb2019/BasicEnumeration.pdf slides])
# [[组合数学 (Fall 2019)/Generating functions|Generating functions | 生成函数]] ( [http://tcs.nju.edu.cn/slides/comb2019/GeneratingFunction.pdf slides])
# [[组合数学 (Fall 2019)/Sieve methods|Sieve methods | 筛法]] ( [http://tcs.nju.edu.cn/slides/comb2019/PIE.pdf slides])
# [[组合数学 (Fall 2019)/Pólya's theory of counting|Pólya's theory of counting | Pólya计数法]] ( [http://tcs.nju.edu.cn/slides/comb2019/Polya.pdf slides])
# [[组合数学 (Fall 2019)/Cayley's formula|Cayley's formula | Cayley公式]]( [http://tcs.nju.edu.cn/slides/comb2019/Cayley.pdf slides])
# [[组合数学 (Fall 2019)/Existence problems|Existence problems | 存在性问题]] ( [http://tcs.nju.edu.cn/slides/comb2019/Existence.pdf slides])
# [[组合数学 (Fall 2019)/The probabilistic method|The probabilistic method | 概率法]]( [http://tcs.nju.edu.cn/slides/comb2019/ProbMethod.pdf slides])
# [[组合数学 (Fall 2019)/Extremal graph theory|Extremal graph theory | 极值图论]]( [http://tcs.nju.edu.cn/slides/comb2019/ExtremalGraphs.pdf slides])
# [[组合数学 (Fall 2019)/Extremal set theory|Extremal set theory | 极值集合论]]( [http://tcs.nju.edu.cn/slides/comb2019/ExtremalSets.pdf slides])
# Ramsey theory | Ramsey理论
# Matching theory | 匹配论
 
= Resources =
* [http://math.mit.edu/~fox/MAT307.html Combinatorics course] by Jacob Fox (now at Stanford) taught at MIT and Princeton.
* [https://www.math.ucla.edu/~pak/lectures/Math-Videos/comb-videos.htm Collection of Combinatorics Videos]
 
= Concepts =
* [http://en.wikipedia.org/wiki/Binomial_coefficient Binomial coefficient]
* [http://en.wikipedia.org/wiki/Twelvefold_way The twelvefold way]
* [http://en.wikipedia.org/wiki/Composition_(number_theory) Composition of a number]
* [http://en.wikipedia.org/wiki/Multiset#Formal_definition Multiset]
* [http://en.wikipedia.org/wiki/Combination#Number_of_combinations_with_repetition Combinations with repetition], [http://en.wikipedia.org/wiki/Multiset#Counting_multisets <math>k</math>-multisets on a set]
* [http://en.wikipedia.org/wiki/Multinomial_theorem#Multinomial_coefficients Multinomial coefficients]
* [http://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind Stirling number of the second kind]
* [http://en.wikipedia.org/wiki/Partition_(number_theory) Partition of a number]
** [http://en.wikipedia.org/wiki/Young_tableau Young tableau]
* [http://en.wikipedia.org/wiki/Fibonacci_number Fibonacci number]
* [http://en.wikipedia.org/wiki/Catalan_number Catalan number]
* [http://en.wikipedia.org/wiki/Generating_function Generating function] and [http://en.wikipedia.org/wiki/Formal_power_series formal power series]
* [http://en.wikipedia.org/wiki/Binomial_series Newton's formula]
* [https://en.wikipedia.org/wiki/Burnside%27s_lemma Burnside's lemma]
**[https://en.wikipedia.org/wiki/Group_action group action] and [https://en.wikipedia.org/wiki/Group_action#Orbits_and_stabilizers orbits]
* [https://en.wikipedia.org/wiki/Permutation#Cycle_notation Cycle decomposition] of permutation
* [https://en.wikipedia.org/wiki/Pólya_enumeration_theorem Pólya enumeration theorem]
* [http://en.wikipedia.org/wiki/Inclusion-exclusion_principle The principle of inclusion-exclusion] (and more generally the [http://en.wikipedia.org/wiki/Sieve_theory sieve method])
* [http://en.wikipedia.org/wiki/M%C3%B6bius_inversion_formula Möbius inversion formula]
* [http://en.wikipedia.org/wiki/Derangement Derangement], and [http://en.wikipedia.org/wiki/M%C3%A9nage_problem Problème des ménages]
* [http://en.wikipedia.org/wiki/Ryser%27s_formula#Ryser_formula Ryser's formula]
* [http://en.wikipedia.org/wiki/Euler_totient Euler totient function]
* [http://en.wikipedia.org/wiki/Cayley_formula Cayley's formula]
** [http://en.wikipedia.org/wiki/Prüfer_sequence Prüfer code for trees]
** [http://en.wikipedia.org/wiki/Kirchhoff%27s_matrix_tree_theorem Kirchhoff's matrix-tree theorem]
* [http://en.wikipedia.org/wiki/Double_counting_(proof_technique) Double counting] and the [http://en.wikipedia.org/wiki/Handshaking_lemma handshaking lemma]
* [http://en.wikipedia.org/wiki/Sperner's_lemma Sperner's lemma] and [http://en.wikipedia.org/wiki/Brouwer_fixed_point_theorem Brouwer fixed point theorem]
* [http://en.wikipedia.org/wiki/Pigeonhole_principle Pigeonhole principle]
:* [http://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Szekeres_theorem Erdős–Szekeres theorem]
:* [http://en.wikipedia.org/wiki/Dirichlet's_approximation_theorem Dirichlet's approximation theorem]
* [http://en.wikipedia.org/wiki/Probabilistic_method The Probabilistic Method]
* [http://en.wikipedia.org/wiki/Lov%C3%A1sz_local_lemma Lovász local lemma]
* [http://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93R%C3%A9nyi_model Erdős–Rényi model for random graphs]
* [http://en.wikipedia.org/wiki/Extremal_graph_theory Extremal graph theory]
* [http://en.wikipedia.org/wiki/Turan_theorem Turán's theorem], [http://en.wikipedia.org/wiki/Tur%C3%A1n_graph Turán graph]
* Two analytic inequalities:
:*[http://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality Cauchy–Schwarz inequality]
:* the [http://en.wikipedia.org/wiki/Inequality_of_arithmetic_and_geometric_means inequality of arithmetic and geometric means]
* [http://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Stone_theorem Erdős–Stone theorem] (fundamental theorem of extremal graph theory)
* [https://en.wikipedia.org/wiki/Sunflower_(mathematics) Sunflower lemma and conjecture]
* [http://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Ko%E2%80%93Rado_theorem Erdős–Ko–Rado theorem]
* [http://en.wikipedia.org/wiki/Sperner_family Sperner system]
* [https://en.wikipedia.org/wiki/Sauer–Shelah_lemma Sauer's lemma] and [https://en.wikipedia.org/wiki/VC_dimension VC dimension]
* [https://en.wikipedia.org/wiki/Kruskal–Katona_theorem Kruskal–Katona theorem]
* [http://en.wikipedia.org/wiki/Ramsey_theory Ramsey theory]
:*[http://en.wikipedia.org/wiki/Ramsey's_theorem Ramsey's theorem]
:*[http://en.wikipedia.org/wiki/Happy_Ending_problem Happy Ending problem]
* [https://en.wikipedia.org/wiki/Hall%27s_marriage_theorem Hall's theorem ] (the marriage theorem)
:* [https://en.wikipedia.org/wiki/Doubly_stochastic_matrix Birkhoff–Von Neumann theorem]
* [http://en.wikipedia.org/wiki/K%C3%B6nig's_theorem_(graph_theory) König-Egerváry theorem]
* [http://en.wikipedia.org/wiki/Dilworth's_theorem Dilworth's theorem]
:* [http://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Szekeres_theorem Erdős–Szekeres theorem]
* The  [http://en.wikipedia.org/wiki/Max-flow_min-cut_theorem Max-Flow Min-Cut Theorem]
:* [https://en.wikipedia.org/wiki/Menger%27s_theorem Menger's theorem]
:* [http://en.wikipedia.org/wiki/Maximum_flow_problem Maximum flow]

Revision as of 05:38, 11 December 2019

Problem 1

(Matching vs. Star)

Given a graph [math]\displaystyle{ G(V,E) }[/math], a matching is a subset [math]\displaystyle{ M\subseteq E }[/math] of edges such that there are no two edges in [math]\displaystyle{ M }[/math] sharing a vertex, and a star is a subset [math]\displaystyle{ S\subseteq E }[/math] of edges such that every pair [math]\displaystyle{ e_1,e_2\in S }[/math] of distinct edges in [math]\displaystyle{ S }[/math] share the same vertex [math]\displaystyle{ v }[/math].

Prove that any graph [math]\displaystyle{ G }[/math] containing more than [math]\displaystyle{ 2(k-1)^2 }[/math] edges either contains a matching of size [math]\displaystyle{ k }[/math] or a star of size [math]\displaystyle{ k }[/math].

(Hint: Learn from the proof of Erdos-Rado's sunflower lemma.)

Problem 2

(Frankl 1986)

Let [math]\displaystyle{ \mathcal{F}\subseteq {[n]\choose k} }[/math] be a [math]\displaystyle{ k }[/math]-uniform family, and suppose that it satisfies that [math]\displaystyle{ A\cap B \not\subset C }[/math] for any [math]\displaystyle{ A,B,C\in\mathcal{F} }[/math].

  • Fix any [math]\displaystyle{ B\in\mathcal{F} }[/math]. Show that the family [math]\displaystyle{ \{A\cap B\mid A\in\mathcal{F}, A\neq B\} }[/math] is an anti chain.
  • Show that [math]\displaystyle{ |\mathcal{F}|\le 1+{k\choose \lfloor k/2\rfloor} }[/math].

Problem 3

An [math]\displaystyle{ n }[/math]-player tournament (竞赛图) [math]\displaystyle{ T([n],E) }[/math] is said to be transitive, if there exists a permutation [math]\displaystyle{ \pi }[/math] of [math]\displaystyle{ [n] }[/math] such that [math]\displaystyle{ \pi_i\lt \pi_j }[/math] for every [math]\displaystyle{ (i,j)\in E }[/math].

Show that for any [math]\displaystyle{ k\ge 3 }[/math], there exists a finite [math]\displaystyle{ N(k) }[/math] such that every tournament of [math]\displaystyle{ n\ge N(k) }[/math] players contains a transitive sub-tournament of [math]\displaystyle{ k }[/math] players. Express [math]\displaystyle{ N(k) }[/math] in terms of Ramsey number.

Problem 4

We color each non-empty subset of [math]\displaystyle{ [n]=\{1,2,\ldots,n\} }[/math] with one of the [math]\displaystyle{ r }[/math] colors in [math]\displaystyle{ [r] }[/math]. Show that for any finite [math]\displaystyle{ r }[/math] there is a finite [math]\displaystyle{ N }[/math] such that for all [math]\displaystyle{ n\ge }[/math]$, for any [math]\displaystyle{ r }[/math]-coloring of all non-empty subsets of [math]\displaystyle{ [n] }[/math], there always exist [math]\displaystyle{ 1\le i\lt j\lt k\le n }[/math] such that the intervals [math]\displaystyle{ [i,j)=\{i,i+1,\ldots, j-1\} }[/math], [math]\displaystyle{ [j,k)=\{j,j+1,\ldots, k-1\} }[/math] and [math]\displaystyle{ [i,k)=\{i,i+1,\ldots, k-1\} }[/math] are all assigned with the same color by the [math]\displaystyle{ r }[/math]-coloring.