计算复杂性 (Fall 2019) and 组合数学 (Fall 2019)/Problem Set 4: Difference between pages

From TCS Wiki
(Difference between pages)
Jump to navigation Jump to search
imported>TCSseminar
 
imported>Etone
No edit summary
 
Line 1: Line 1:
{{Infobox
== Problem 1 ==
|name        = Infobox
(Matching vs. Star)
|bodystyle    =  
|title        = <font size=3>计算复杂性
<br>Computational Complexity</font>
|titlestyle  =


|image        =
Given a graph <math>G(V,E)</math>, a ''matching'' is a subset <math>M\subseteq E</math> of edges such that there are no two edges in <math>M</math> sharing a vertex, and a ''star'' is a subset <math>S\subseteq E</math> of edges such that every pair <math>e_1,e_2\in S</math> of distinct edges in <math>S</math> share the same vertex <math>v</math>.
|imagestyle  =
|caption      =
|captionstyle =
|headerstyle  = background:#ccf;
|labelstyle  = background:#ddf;
|datastyle    =


|header1 =Instructor
Prove that any graph <math>G</math> containing more than <math>2(k-1)^2</math> edges either contains a matching of size <math>k</math> or a star of size <math>k</math>.
|label1  =
|data1  =
|header2 =
|label2  =
|data2  = 姚鹏晖
|header3 =
|label3  = Email
|data3  = pyao@nju.edu.cn 
|header4 =
|label4= Office
|data4= 计算机系 502
|header5 = Class
|label5  =
|data5  =
|header6 =
|label6  = Class meetings
|data6  = Thursday, 18:30-20:20 <br> 仙II-214
|header7 =
|label7  = Place
|data7  =
|header8 =
|label8  = Office hours
|data8  = Thursday, 14:00-16:00 <br>计算机系 502
|header9 = Textbooks
|label9  =
|data9  =
|header10 =
|label10  =
|data10  = https://image.ibb.co/drYZEp/51_KWx_I1yyy_L.jpg
|header11 =
|label11  =
|data11  = Arora and Barak. <br>''Computational Complexity: A Modern Approach''.<br> Cambridge Univ Press, 2009.
|header12 = Teaching Assistant
|data13= 刘明谋
|label14=Email
|data14=liu.mingmou@smail.nju.edu.cn
|label15=Office
|data15=计算机系 410
|belowstyle = background:#ddf;
|below =
}}


(Hint: Learn from the proof of Erdos-Rado's sunflower lemma.)


== Problem 2 ==
(Frankl 1986)


= Announcement =
Let <math>\mathcal{F}\subseteq {[n]\choose k}</math> be a <math>k</math>-uniform family, and suppose that it satisfies that <math>A\cap B \not\subset C</math> for any <math>A,B,C\in\mathcal{F}</math>.
* (2019/9/5) 新学期第一堂课。
* Fix any <math>B\in\mathcal{F}</math>. Show that the family <math>\{A\cap B\mid A\in\mathcal{F}, A\neq B\}</math> is an anti chain.
* (2019/9/5) 交流及授课反馈群: 854081425 [https://i.ibb.co/cN3ydT6/2019.png  QRcode](助教出差中,有问题可以到qq群问或者邮件询问。qq群仅作讨论用,所有的通知及资料仍在本页面发放)
* Show that <math>|\mathcal{F}|\le 1+{k\choose \lfloor k/2\rfloor}</math>.
* (2019/9/17) 第一次作业已发布,9月26日之前交。
* (2019/9/26) 第二次作业已发布,10月10日上课前交。
* (2019/9/29) 第二次作业的 3.8 题目有错,把题目第一行的 unary 一词删去。
* (2019/10/7) 第一次作业已批阅发回,参考答案及评分标准已发布。
* (2019/10/11) 第三次作业已发布,10月24日上课前交。


= Course info =
==Problem 3 ==
* '''Instructor ''': 姚鹏晖 ([mailto:pyao@nju.edu.cn pyao@nju.edu.cn])
An <math>n</math>-player tournament (竞赛图) <math>T([n],E)</math> is said to be '''transitive''', if there exists a permutation <math>\pi</math> of <math>[n]</math> such that <math>\pi_i<\pi_j</math> for every <math>(i,j)\in E</math>.
* '''Teaching assistant''': 刘明谋 ([mailto:liu.mingmou@smail.nju.edu.cn liu.mingmou@smail.nju.edu.cn])
* '''Class meeting''': Thursday, 18:30-20:20  仙II-214.
* '''Office hour''': Thursday, 14:00-16:00, 计算机系 502.


= Course materials =
Show that for any <math>k\ge 3</math>, there exists a finite <math>N(k)</math> such that every tournament of <math>n\ge N(k)</math> players contains a transitive sub-tournament of <math>k</math> players. Express <math>N(k)</math> in terms of Ramsey number.
* [https://www.amazon.com/dp/0521424267 Arora and Barak. Computational Complexity: A Modern Approach. Cambridge Univ Press, 2009.]
* [https://www.amazon.cn/dp/B007VXH70K/ Arora and Barak. 计算复杂性的现代方法. (英语). 世界图书出版公司. 2012.]
* [https://www.amazon.cn/dp/B018LW74IY/ Arora and Barak. 计算复杂性:现代方法. (中文翻译). 机械工业出版社. 2016.]
如果在获取教材方面有困难可以联系助教。(仅限英文版)


= Assignments =
==Problem 4==
这是一门概念性课程,也是一门理论课程。作为理论课程,证明应该是小心、严谨的。作为概念性课程,同学们需要在作业中证明自己确实、清楚地掌握了这些概念,而不是在试图滥竽充数蒙混过关。所以在作业中请尽量不要偷懒,把每一个步骤和定义都仔细小心地写清楚,以免无意义地失分。
We color each non-empty subset of <math>[n]=\{1,2,\ldots,n\}</math> with one of the <math>r</math> colors in <math>[r]</math>. Show that for any finite <math>r</math> there is a finite <math>N</math> such that for all <math>n\ge </math>$, for any <math>r</math>-coloring of all non-empty subsets of <math>[n]</math>, there always exist <math>1\le i<j<k\le n</math> such that the intervals <math>[i,j)=\{i,i+1,\ldots, j-1\}</math>, <math>[j,k)=\{j,j+1,\ldots, k-1\}</math> and <math>[i,k)=\{i,i+1,\ldots, k-1\}</math> are all assigned with the same color by the <math>r</math>-coloring.
* [[计算复杂性 (Fall 2019)/Assignment 1|Assignment 1]], due on Sep 25. [[计算复杂性 (Fall 2019)/作业1已提交名单 | 作业1已提交名单]].
* [https://www.overleaf.com/read/rwcjcjpxqvfn 作业1参考答案及评分标准]
* [[计算复杂性 (Fall 2019)/Assignment 2|Assignment 2 (updated)]], due on Oct 10. [[计算复杂性 (Fall 2019)/作业2已提交名单 | 当前作业2已提交名单]].
* [[计算复杂性 (Fall 2019)/Assignment 3|Assignment 3]], due on Oct 24.
 
= Lecture Notes =
# 图灵机、计算复杂性类 P ([http://45.76.225.122:8000/cc_fall19/lec%201.pptx slides])
# NP 和 NP 完全问题 ([http://45.76.225.122:8000/cc_fall19/lec%202.pptx slides.v2])
# 对角化方法 ([http://45.76.225.122:8000/cc_fall19/lec%203.pptx slides(updated)])
# 空间复杂度 ([http://45.76.225.122:8000/cc_fall19/lec%204.1.pptx slides1],[http://45.76.225.122:8000/cc_fall19/lec%204.2.pptx slides2])

Revision as of 05:38, 11 December 2019

Problem 1

(Matching vs. Star)

Given a graph [math]\displaystyle{ G(V,E) }[/math], a matching is a subset [math]\displaystyle{ M\subseteq E }[/math] of edges such that there are no two edges in [math]\displaystyle{ M }[/math] sharing a vertex, and a star is a subset [math]\displaystyle{ S\subseteq E }[/math] of edges such that every pair [math]\displaystyle{ e_1,e_2\in S }[/math] of distinct edges in [math]\displaystyle{ S }[/math] share the same vertex [math]\displaystyle{ v }[/math].

Prove that any graph [math]\displaystyle{ G }[/math] containing more than [math]\displaystyle{ 2(k-1)^2 }[/math] edges either contains a matching of size [math]\displaystyle{ k }[/math] or a star of size [math]\displaystyle{ k }[/math].

(Hint: Learn from the proof of Erdos-Rado's sunflower lemma.)

Problem 2

(Frankl 1986)

Let [math]\displaystyle{ \mathcal{F}\subseteq {[n]\choose k} }[/math] be a [math]\displaystyle{ k }[/math]-uniform family, and suppose that it satisfies that [math]\displaystyle{ A\cap B \not\subset C }[/math] for any [math]\displaystyle{ A,B,C\in\mathcal{F} }[/math].

  • Fix any [math]\displaystyle{ B\in\mathcal{F} }[/math]. Show that the family [math]\displaystyle{ \{A\cap B\mid A\in\mathcal{F}, A\neq B\} }[/math] is an anti chain.
  • Show that [math]\displaystyle{ |\mathcal{F}|\le 1+{k\choose \lfloor k/2\rfloor} }[/math].

Problem 3

An [math]\displaystyle{ n }[/math]-player tournament (竞赛图) [math]\displaystyle{ T([n],E) }[/math] is said to be transitive, if there exists a permutation [math]\displaystyle{ \pi }[/math] of [math]\displaystyle{ [n] }[/math] such that [math]\displaystyle{ \pi_i\lt \pi_j }[/math] for every [math]\displaystyle{ (i,j)\in E }[/math].

Show that for any [math]\displaystyle{ k\ge 3 }[/math], there exists a finite [math]\displaystyle{ N(k) }[/math] such that every tournament of [math]\displaystyle{ n\ge N(k) }[/math] players contains a transitive sub-tournament of [math]\displaystyle{ k }[/math] players. Express [math]\displaystyle{ N(k) }[/math] in terms of Ramsey number.

Problem 4

We color each non-empty subset of [math]\displaystyle{ [n]=\{1,2,\ldots,n\} }[/math] with one of the [math]\displaystyle{ r }[/math] colors in [math]\displaystyle{ [r] }[/math]. Show that for any finite [math]\displaystyle{ r }[/math] there is a finite [math]\displaystyle{ N }[/math] such that for all [math]\displaystyle{ n\ge }[/math]$, for any [math]\displaystyle{ r }[/math]-coloring of all non-empty subsets of [math]\displaystyle{ [n] }[/math], there always exist [math]\displaystyle{ 1\le i\lt j\lt k\le n }[/math] such that the intervals [math]\displaystyle{ [i,j)=\{i,i+1,\ldots, j-1\} }[/math], [math]\displaystyle{ [j,k)=\{j,j+1,\ldots, k-1\} }[/math] and [math]\displaystyle{ [i,k)=\{i,i+1,\ldots, k-1\} }[/math] are all assigned with the same color by the [math]\displaystyle{ r }[/math]-coloring.