高级算法 (Fall 2021)/Basic tail inequalities and File:7b8c359ae1af6bda4ed78a7721bd4338.png: Difference between pages

From TCS Wiki
(Difference between pages)
Jump to navigation Jump to search
imported>Etone
(Created page with "=Markov's Inequality= One of the most natural information about a random variable is its expectation, which is the first moment of the random variable. Markov's inequality dr...")
 
(== Summary == Importing file)
Tag: Server-side upload
 
Line 1: Line 1:
=Markov's Inequality=
== Summary ==
 
Importing file
One of the most natural information about a random variable is its expectation, which is the first moment of the random variable. Markov's inequality draws a tail bound for a random variable from its expectation.
{{Theorem
|Theorem (Markov's Inequality)|
:Let <math>X</math> be a random variable assuming only nonnegative values. Then, for all <math>t>0</math>,
::<math>\begin{align}
\Pr[X\ge t]\le \frac{\mathbf{E}[X]}{t}.
\end{align}</math>
}}
{{Proof| Let <math>Y</math> be the indicator such that
:<math>\begin{align}
Y &=
\begin{cases}
1 & \mbox{if }X\ge t,\\
0 & \mbox{otherwise.}
\end{cases}
\end{align}</math>
 
It holds that <math>Y\le\frac{X}{t}</math>. Since <math>Y</math> is 0-1 valued, <math>\mathbf{E}[Y]=\Pr[Y=1]=\Pr[X\ge t]</math>. Therefore,
:<math>
\Pr[X\ge t]
=
\mathbf{E}[Y]
\le
\mathbf{E}\left[\frac{X}{t}\right]
=\frac{\mathbf{E}[X]}{t}.
</math>
}}
 
== Generalization ==
For any random variable <math>X</math>, for an arbitrary non-negative real function <math>h</math>, the <math>h(X)</math> is a non-negative random variable. Applying Markov's inequality, we directly have that
:<math>
\Pr[h(X)\ge t]\le\frac{\mathbf{E}[h(X)]}{t}.
</math>
 
This trivial application of Markov's inequality gives us a powerful tool for proving tail inequalities. With the function <math>h</math> which extracts more information about the random variable, we can prove sharper tail inequalities.
 
=Chebyshev's inequality=
 
== Variance ==
{{Theorem
|Definition (variance)|
:The '''variance''' of a random variable <math>X</math> is defined as
::<math>\begin{align}
\mathbf{Var}[X]=\mathbf{E}\left[(X-\mathbf{E}[X])^2\right]=\mathbf{E}\left[X^2\right]-(\mathbf{E}[X])^2.
\end{align}</math>
:The '''standard deviation''' of random variable <math>X</math> is
::<math>
\delta[X]=\sqrt{\mathbf{Var}[X]}.
</math>
}}
 
The variance is the diagonal case for '''covariance'''.
{{Theorem
|Definition (covariance)|
:The '''covariance''' of two random variables <math>X</math> and <math>Y</math> is
::<math>\begin{align}
\mathbf{Cov}(X,Y)=\mathbf{E}\left[(X-\mathbf{E}[X])(Y-\mathbf{E}[Y])\right].
\end{align}</math>
}}
 
We have the following theorem for the variance of sum.
 
{{Theorem
|Theorem|
:For any two random variables <math>X</math> and <math>Y</math>,
::<math>\begin{align}
\mathbf{Var}[X+Y]=\mathbf{Var}[X]+\mathbf{Var}[Y]+2\mathbf{Cov}(X,Y).
\end{align}</math>
:Generally, for any random variables <math>X_1,X_2,\ldots,X_n</math>,
::<math>\begin{align}
\mathbf{Var}\left[\sum_{i=1}^n X_i\right]=\sum_{i=1}^n\mathbf{Var}[X_i]+\sum_{i\neq j}\mathbf{Cov}(X_i,X_j).
\end{align}</math>
}}
{{Proof| The equation for two variables is directly due to the definition of variance and covariance. The equation for <math>n</math> variables can be deduced from the equation for two variables.
}}
 
For independent random variables, the expectation of a product equals the product of expectations.
{{Theorem
|Theorem|
:For any two independent random variables <math>X</math> and <math>Y</math>,
::<math>\begin{align}
\mathbf{E}[X\cdot Y]=\mathbf{E}[X]\cdot\mathbf{E}[Y].
\end{align}</math>
}}
{{Proof|
:<math>
\begin{align}
\mathbf{E}[X\cdot Y]
&=
\sum_{x,y}xy\Pr[X=x\wedge Y=y]\\
&=
\sum_{x,y}xy\Pr[X=x]\Pr[Y=y]\\
&=
\sum_{x}x\Pr[X=x]\sum_{y}y\Pr[Y=y]\\
&=
\mathbf{E}[X]\cdot\mathbf{E}[Y].
\end{align}
</math>
}}
 
Consequently, covariance of independent random variables is always zero.
{{Theorem
|Theorem|
:For any two independent random variables <math>X</math> and <math>Y</math>,
::<math>\begin{align}
\mathbf{Cov}(X,Y)=0.
\end{align}</math>
}}
{{Proof|
:<math>\begin{align}
\mathbf{Cov}(X,Y)
&=\mathbf{E}\left[(X-\mathbf{E}[X])(Y-\mathbf{E}[Y])\right]\\
&= \mathbf{E}\left[X-\mathbf{E}[X]\right]\mathbf{E}\left[Y-\mathbf{E}[Y]\right] &\qquad(\mbox{Independence})\\
&=0.
\end{align}</math>
}}
 
The variance of the sum of pairwise independent random variables is equal to the sum of variances.
{{Theorem
|Theorem|
:For '''pairwise''' independent random variables <math>X_1,X_2,\ldots,X_n</math>,
::<math>\begin{align}
\mathbf{Var}\left[\sum_{i=1}^n X_i\right]=\sum_{i=1}^n\mathbf{Var}[X_i].
\end{align}</math>
}}
 
;Remark
:The theorem holds for '''pairwise''' independent random variables, a much weaker independence requirement than the '''mutual''' independence. This makes the second-moment methods very useful for pairwise independent random variables.
 
=== Variance of binomial distribution ===
For a Bernoulli trial with parameter <math>p</math>.
:<math>
X=\begin{cases}
1& \mbox{with probability }p\\
0& \mbox{with probability }1-p
\end{cases}
</math>
The variance is
:<math>
\mathbf{Var}[X]=\mathbf{E}[X^2]-(\mathbf{E}[X])^2=\mathbf{E}[X]-(\mathbf{E}[X])^2=p-p^2=p(1-p).
</math>
 
Let <math>Y</math> be a binomial random variable with parameter <math>n</math> and <math>p</math>, i.e. <math>Y=\sum_{i=1}^nY_i</math>, where <math>Y_i</math>'s are i.i.d. Bernoulli trials with parameter <math>p</math>. The variance is
:<math>
\begin{align}
\mathbf{Var}[Y]
&=
\mathbf{Var}\left[\sum_{i=1}^nY_i\right]\\
&=
\sum_{i=1}^n\mathbf{Var}\left[Y_i\right] &\qquad (\mbox{Independence})\\
&=
\sum_{i=1}^np(1-p) &\qquad (\mbox{Bernoulli})\\
&=
p(1-p)n.
\end{align}
</math>
 
== Chebyshev's inequality ==
{{Theorem
|Theorem (Chebyshev's Inequality)|
:For any <math>t>0</math>,
::<math>\begin{align}
\Pr\left[|X-\mathbf{E}[X]| \ge t\right] \le \frac{\mathbf{Var}[X]}{t^2}.
\end{align}</math>
}}
{{Proof| Observe that
:<math>\Pr[|X-\mathbf{E}[X]| \ge t] = \Pr[(X-\mathbf{E}[X])^2 \ge t^2].</math>
Since <math>(X-\mathbf{E}[X])^2</math> is a nonnegative random variable, we can apply Markov's inequality, such that
:<math>
\Pr[(X-\mathbf{E}[X])^2 \ge t^2] \le
\frac{\mathbf{E}[(X-\mathbf{E}[X])^2]}{t^2}
=\frac{\mathbf{Var}[X]}{t^2}.
</math>
}}

Latest revision as of 12:42, 30 August 2022

Summary

Importing file