Combinatorics (Fall 2010)/Extremal set theory: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>WikiSysop
imported>WikiSysop
No edit summary
Line 1: Line 1:
== Sperner system ==
{{Theorem|Theorem (Sperner 1928)|
:Let <math>|S|=n</math> and <math>\mathcal{F}\subseteq 2^S</math> be an antichain. Then
::<math>|\mathcal{F}|\le{n\choose \lfloor n/2\rfloor}</math>.
}}
=== First proof (symmetric chain decomposition) ===
{{Prooftitle|Proof of Sperner's theorem |
}}
=== Second proof (shadowing)===
{{Theorem|Definition|
:Let <math>|S|=n\,</math> and <math>\mathcal{F}\subseteq {S\choose k}</math>, <math>k<n\,</math>.
:The '''shade''' of <math>\mathcal{F}</math> is defined to be
::<math>\nabla\mathcal{F}=\left\{A\in {S\choose k+1}\,\,\bigg|\,\, \exists B\in\mathcal{F}\mbox{ such that } B\subset A\right\}</math>.
:Thus the shade <math>\nabla\mathcal{F}</math> of <math>\mathcal{F}</math> consists of all subsets of <math>S</math> which can be obtained by adding an element to a set in <math>\mathcal{F}</math>.
:Similarly, the '''shadow''' of <math>\mathcal{F}</math> is defined to be
::<math>\Delta\mathcal{F}=\left\{A\in {S\choose k-1}\,\,\bigg|\,\, \exists B\in\mathcal{F}\mbox{ such that } A\subset B\right\}</math>.
:Thus the shadow <math>\Delta\mathcal{F}</math> of <math>\mathcal{F}</math> consists of all subsets of <math>S</math> which can be obtained by removing an element from a set in <math>\mathcal{F}</math>.
}}
{{Theorem|Lemma (Sperner)|
:Let <math>|S|=n\,</math> and <math>\mathcal{F}\subseteq {S\choose k}</math>. Then
::<math>
\begin{align}
&|\nabla\mathcal{F}|\ge\frac{n-k}{k+1}|\mathcal{F}| &\text{ if } k<n\\
&|\Delta\mathcal{F}|\ge\frac{k}{n-k+1}|\mathcal{F}| &\text{ if } k>0.
\end{align}
</math>
}}
{{Prooftitle|Proof of Sperner's theorem | (original proof of Sperner)
}}
=== Third proof (double counting)===
{{Prooftitle|Proof of Sperner's theorem | (Lubell 1966)
}}
== Sunflowers ==
== Sunflowers ==



Revision as of 05:16, 22 October 2010

Sperner system

Theorem (Sperner 1928)
Let [math]\displaystyle{ |S|=n }[/math] and [math]\displaystyle{ \mathcal{F}\subseteq 2^S }[/math] be an antichain. Then
[math]\displaystyle{ |\mathcal{F}|\le{n\choose \lfloor n/2\rfloor} }[/math].

First proof (symmetric chain decomposition)

Proof of Sperner's theorem
[math]\displaystyle{ \square }[/math]

Second proof (shadowing)

Definition
Let [math]\displaystyle{ |S|=n\, }[/math] and [math]\displaystyle{ \mathcal{F}\subseteq {S\choose k} }[/math], [math]\displaystyle{ k\lt n\, }[/math].
The shade of [math]\displaystyle{ \mathcal{F} }[/math] is defined to be
[math]\displaystyle{ \nabla\mathcal{F}=\left\{A\in {S\choose k+1}\,\,\bigg|\,\, \exists B\in\mathcal{F}\mbox{ such that } B\subset A\right\} }[/math].
Thus the shade [math]\displaystyle{ \nabla\mathcal{F} }[/math] of [math]\displaystyle{ \mathcal{F} }[/math] consists of all subsets of [math]\displaystyle{ S }[/math] which can be obtained by adding an element to a set in [math]\displaystyle{ \mathcal{F} }[/math].
Similarly, the shadow of [math]\displaystyle{ \mathcal{F} }[/math] is defined to be
[math]\displaystyle{ \Delta\mathcal{F}=\left\{A\in {S\choose k-1}\,\,\bigg|\,\, \exists B\in\mathcal{F}\mbox{ such that } A\subset B\right\} }[/math].
Thus the shadow [math]\displaystyle{ \Delta\mathcal{F} }[/math] of [math]\displaystyle{ \mathcal{F} }[/math] consists of all subsets of [math]\displaystyle{ S }[/math] which can be obtained by removing an element from a set in [math]\displaystyle{ \mathcal{F} }[/math].
Lemma (Sperner)
Let [math]\displaystyle{ |S|=n\, }[/math] and [math]\displaystyle{ \mathcal{F}\subseteq {S\choose k} }[/math]. Then
[math]\displaystyle{ \begin{align} &|\nabla\mathcal{F}|\ge\frac{n-k}{k+1}|\mathcal{F}| &\text{ if } k\lt n\\ &|\Delta\mathcal{F}|\ge\frac{k}{n-k+1}|\mathcal{F}| &\text{ if } k\gt 0. \end{align} }[/math]
Proof of Sperner's theorem
(original proof of Sperner)
[math]\displaystyle{ \square }[/math]

Third proof (double counting)

Proof of Sperner's theorem
(Lubell 1966)
[math]\displaystyle{ \square }[/math]


Sunflowers

Erdős–Ko–Rado theorem

Helly-type theorems

Kruskal–Katona theorem