Combinatorics (Fall 2010)/Extremal set theory: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>WikiSysop
imported>WikiSysop
No edit summary
Line 9: Line 9:
:Let <math>|X|=n\,</math> and <math>\mathcal{F}\subseteq {X\choose k}</math>, <math>k<n\,</math>.  
:Let <math>|X|=n\,</math> and <math>\mathcal{F}\subseteq {X\choose k}</math>, <math>k<n\,</math>.  
:The '''shade''' of <math>\mathcal{F}</math> is defined to be
:The '''shade''' of <math>\mathcal{F}</math> is defined to be
::<math>\nabla\mathcal{F}=\left\{A\in {X\choose k+1}\,\,\bigg|\,\, \exists B\in\mathcal{F}\mbox{ such that } B\subset A\right\}</math>.
::<math>\nabla\mathcal{F}=\left\{T\in {X\choose k+1}\,\,\bigg|\,\, \exists S\in\mathcal{F}\mbox{ such that } S\subset T\right\}</math>.
:Thus the shade <math>\nabla\mathcal{F}</math> of <math>\mathcal{F}</math> consists of all subsets of <math>X</math> which can be obtained by adding an element to a set in <math>\mathcal{F}</math>.
:Thus the shade <math>\nabla\mathcal{F}</math> of <math>\mathcal{F}</math> consists of all subsets of <math>X</math> which can be obtained by adding an element to a set in <math>\mathcal{F}</math>.
:Similarly, the '''shadow''' of <math>\mathcal{F}</math> is defined to be
:Similarly, the '''shadow''' of <math>\mathcal{F}</math> is defined to be
::<math>\Delta\mathcal{F}=\left\{A\in {X\choose k-1}\,\,\bigg|\,\, \exists B\in\mathcal{F}\mbox{ such that } A\subset B\right\}</math>.
::<math>\Delta\mathcal{F}=\left\{T\in {X\choose k-1}\,\,\bigg|\,\, \exists S\in\mathcal{F}\mbox{ such that } T\subset S\right\}</math>.
:Thus the shadow <math>\Delta\mathcal{F}</math> of <math>\mathcal{F}</math> consists of all subsets of <math>X</math> which can be obtained by removing an element from a set in <math>\mathcal{F}</math>.
:Thus the shadow <math>\Delta\mathcal{F}</math> of <math>\mathcal{F}</math> consists of all subsets of <math>X</math> which can be obtained by removing an element from a set in <math>\mathcal{F}</math>.
}}
}}
Line 36: Line 36:


{{Theorem|Theorem (Lubell, Yamamoto 1954; Meschalkin 1963)|
{{Theorem|Theorem (Lubell, Yamamoto 1954; Meschalkin 1963)|
:Let <math>|X|=n</math> and <math>\mathcal{F}\subseteq 2^X</math> be an antichain. For <math>k=0,1,\ldots,n</math>, let <math>f_k=|\{A\in\mathcal{F}\mid |A|=k\}|</math>. Then
:Let <math>|X|=n</math> and <math>\mathcal{F}\subseteq 2^X</math> be an antichain. For <math>k=0,1,\ldots,n</math>, let <math>f_k=|\{S\in\mathcal{F}\mid |S|=k\}|</math>. Then
::<math>\sum_{A\in\mathcal{F}}\frac{1}{{n\choose |A|}}=\sum_{k=0}^n\frac{f_k}{{n\choose k}}\le 1</math>.
::<math>\sum_{S\in\mathcal{F}}\frac{1}{{n\choose |S|}}=\sum_{k=0}^n\frac{f_k}{{n\choose k}}\le 1</math>.
}}
}}


Line 44: Line 44:


{{Theorem|Proposition|
{{Theorem|Proposition|
:<math>\sum_{A\in\mathcal{F}}\frac{1}{{n\choose |A|}}\le 1</math> implies that <math>|\mathcal{F}|\le{n\choose \lfloor n/2\rfloor}</math>.
:<math>\sum_{S\in\mathcal{F}}\frac{1}{{n\choose |S|}}\le 1</math> implies that <math>|\mathcal{F}|\le{n\choose \lfloor n/2\rfloor}</math>.
}}
}}


== Sunflowers ==
==Intersecting Families ==
=== Sunflowers ===
{{Theorem|Sunflower Lemma|
{{Theorem|Sunflower Lemma|
:Let <math>\mathcal{F}\subset {X\choose k}</math>. If <math>|\mathcal{F}|>k!(r-1)^k</math>, then <math>|\mathcal{F}|</math> contains a sunflower of size  <math>r</math>.
:Let <math>\mathcal{F}\subset {X\choose k}</math>. If <math>|\mathcal{F}|>k!(r-1)^k</math>, then <math>|\mathcal{F}|</math> contains a sunflower of size  <math>r</math>.
}}
}}


== Erdős–Ko–Rado theorem ==
=== Erdős–Ko–Rado theorem ===
{{Theorem|Erdős–Ko–Rado theorem|
:Let <math>\mathcal{F}\subseteq {X\choose k}</math>. If for any <math>S,T\in\mathcal{F}</math>, <math>S\cap T\neq\emptyset</math>, then
::<math>|\mathcal{F}|\le{n-1\choose k-1}</math>.
}}


== Kruskal–Katona theorem ==
== Kruskal–Katona theorem ==
{{Theorem|Theorem (Kruskal 1963, Katona 1966)|
:Let <math>\mathcal{F}\subseteq {X\choose k}</math> with <math>|\mathcal{F}|=m</math>, and suppose that
::<math>m={n_k\choose k}+{n_{k-1}\choose k-1}+\cdots+{n_t\choose t}</math>
:where <math>a_k>a_{k-1}>\cdots>a_t\ge t\ge 1</math>. Then
::<math>|\Delta\mathcal{F}|\ge {n_k\choose k-1}+{n_{k-1}\choose k-2}+\cdots+{n_t\choose t-1}</math>.
}}

Revision as of 02:34, 27 October 2010

Sperner system

Theorem (Sperner 1928)
Let [math]\displaystyle{ |X|=n }[/math] and [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] be an antichain. Then
[math]\displaystyle{ |\mathcal{F}|\le{n\choose \lfloor n/2\rfloor} }[/math].

First proof (shadowing)

Definition
Let [math]\displaystyle{ |X|=n\, }[/math] and [math]\displaystyle{ \mathcal{F}\subseteq {X\choose k} }[/math], [math]\displaystyle{ k\lt n\, }[/math].
The shade of [math]\displaystyle{ \mathcal{F} }[/math] is defined to be
[math]\displaystyle{ \nabla\mathcal{F}=\left\{T\in {X\choose k+1}\,\,\bigg|\,\, \exists S\in\mathcal{F}\mbox{ such that } S\subset T\right\} }[/math].
Thus the shade [math]\displaystyle{ \nabla\mathcal{F} }[/math] of [math]\displaystyle{ \mathcal{F} }[/math] consists of all subsets of [math]\displaystyle{ X }[/math] which can be obtained by adding an element to a set in [math]\displaystyle{ \mathcal{F} }[/math].
Similarly, the shadow of [math]\displaystyle{ \mathcal{F} }[/math] is defined to be
[math]\displaystyle{ \Delta\mathcal{F}=\left\{T\in {X\choose k-1}\,\,\bigg|\,\, \exists S\in\mathcal{F}\mbox{ such that } T\subset S\right\} }[/math].
Thus the shadow [math]\displaystyle{ \Delta\mathcal{F} }[/math] of [math]\displaystyle{ \mathcal{F} }[/math] consists of all subsets of [math]\displaystyle{ X }[/math] which can be obtained by removing an element from a set in [math]\displaystyle{ \mathcal{F} }[/math].
Lemma (Sperner)
Let [math]\displaystyle{ |X|=n\, }[/math] and [math]\displaystyle{ \mathcal{F}\subseteq {X\choose k} }[/math]. Then
[math]\displaystyle{ \begin{align} &|\nabla\mathcal{F}|\ge\frac{n-k}{k+1}|\mathcal{F}| &\text{ if } k\lt n\\ &|\Delta\mathcal{F}|\ge\frac{k}{n-k+1}|\mathcal{F}| &\text{ if } k\gt 0. \end{align} }[/math]
Proof of Sperner's theorem
(original proof of Sperner)
[math]\displaystyle{ \square }[/math]

Second proof (double counting)

Proof of Sperner's theorem
(Lubell 1966)
[math]\displaystyle{ \square }[/math]

The LYM inequality

Theorem (Lubell, Yamamoto 1954; Meschalkin 1963)
Let [math]\displaystyle{ |X|=n }[/math] and [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] be an antichain. For [math]\displaystyle{ k=0,1,\ldots,n }[/math], let [math]\displaystyle{ f_k=|\{S\in\mathcal{F}\mid |S|=k\}| }[/math]. Then
[math]\displaystyle{ \sum_{S\in\mathcal{F}}\frac{1}{{n\choose |S|}}=\sum_{k=0}^n\frac{f_k}{{n\choose k}}\le 1 }[/math].
Third proof (the probabilistic method)
(Due to Alon.)
[math]\displaystyle{ \square }[/math]
Proposition
[math]\displaystyle{ \sum_{S\in\mathcal{F}}\frac{1}{{n\choose |S|}}\le 1 }[/math] implies that [math]\displaystyle{ |\mathcal{F}|\le{n\choose \lfloor n/2\rfloor} }[/math].

Intersecting Families

Sunflowers

Sunflower Lemma
Let [math]\displaystyle{ \mathcal{F}\subset {X\choose k} }[/math]. If [math]\displaystyle{ |\mathcal{F}|\gt k!(r-1)^k }[/math], then [math]\displaystyle{ |\mathcal{F}| }[/math] contains a sunflower of size [math]\displaystyle{ r }[/math].

Erdős–Ko–Rado theorem

Erdős–Ko–Rado theorem
Let [math]\displaystyle{ \mathcal{F}\subseteq {X\choose k} }[/math]. If for any [math]\displaystyle{ S,T\in\mathcal{F} }[/math], [math]\displaystyle{ S\cap T\neq\emptyset }[/math], then
[math]\displaystyle{ |\mathcal{F}|\le{n-1\choose k-1} }[/math].

Kruskal–Katona theorem

Theorem (Kruskal 1963, Katona 1966)
Let [math]\displaystyle{ \mathcal{F}\subseteq {X\choose k} }[/math] with [math]\displaystyle{ |\mathcal{F}|=m }[/math], and suppose that
[math]\displaystyle{ m={n_k\choose k}+{n_{k-1}\choose k-1}+\cdots+{n_t\choose t} }[/math]
where [math]\displaystyle{ a_k\gt a_{k-1}\gt \cdots\gt a_t\ge t\ge 1 }[/math]. Then
[math]\displaystyle{ |\Delta\mathcal{F}|\ge {n_k\choose k-1}+{n_{k-1}\choose k-2}+\cdots+{n_t\choose t-1} }[/math].