高级算法 (Fall 2017)/Finite Field Basics

From TCS Wiki
Revision as of 16:21, 13 September 2017 by imported>Etone (→‎Field)
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Field

Let [math]\displaystyle{ S }[/math] be a set, closed under two binary operations [math]\displaystyle{ + }[/math] (addition) and [math]\displaystyle{ \cdot }[/math] (multiplication). It gives us the following algebraic structures if the corresponding set of axioms are satisfied.

Structures Operations Axioms
field commutative
ring
ring abelian
group
group monoid semigroup [math]\displaystyle{ + }[/math] 1. Addition is associative: [math]\displaystyle{ \forall x,y,z\in S, (x+y)+z= x+(y+z). }[/math]
2. Existence of additive identity 0: [math]\displaystyle{ \forall x\in S, x+0= 0+x=x. }[/math]
3. Everyone has an additive inverse: [math]\displaystyle{ \forall x\in S, \exists -x\in S, \text{ s.t. } x+(-x)= (-x)+x=0. }[/math]
4. Addition is commutative: [math]\displaystyle{ \forall x,y\in S, x+y= y+x. }[/math]
[math]\displaystyle{ +,\cdot }[/math] 5. Multiplication distributes over addition: [math]\displaystyle{ \forall x,y,z\in S, x\cdot(y+z)= x\cdot y+x\cdot z }[/math] and [math]\displaystyle{ (y+z)\cdot x= y\cdot x+z\cdot x. }[/math]
[math]\displaystyle{ \cdot }[/math] 6. Multiplication is associative: [math]\displaystyle{ \forall x,y,z\in S, (x\cdot y)\cdot z= x\cdot (y\cdot z). }[/math]
7. Existence of multiplicative identity 1: [math]\displaystyle{ \forall x\in S, x\cdot 1= 1\cdot x=x. }[/math]
8. Multiplication is commutative: [math]\displaystyle{ \forall x,y\in S, x\cdot y= y\cdot x. }[/math]
9. Every non-zero element has a multiplicative inverse: [math]\displaystyle{ \forall x\in S\setminus\{0\}, \exists x^{-1}\in S, \text{ s.t. } x\cdot x^{-1}= x^{-1}\cdot x=1. }[/math]

The semigroup, monoid, group and abelian group are given by [math]\displaystyle{ (S,+) }[/math], and the ring, commutative ring, and field are given by [math]\displaystyle{ (S,+,\cdot) }[/math].

Examples:

  • Infinite fields: [math]\displaystyle{ \mathbb{Q} }[/math], [math]\displaystyle{ \mathbb{R} }[/math], [math]\displaystyle{ \mathbb{C} }[/math] are fields. The integer set [math]\displaystyle{ \mathbb{Z} }[/math] is a commutative ring but is not a field.
  • Finite fields: For any integer [math]\displaystyle{ n\gt 1 }[/math], the modulo ring [math]\displaystyle{ \mathbb{Z}_n=\{0,1,\ldots,n-1\} }[/math] (where addition [math]\displaystyle{ + }[/math] and multiplication [math]\displaystyle{ \cdot }[/math] are defined modulo [math]\displaystyle{ n }[/math]) is a commutative ring. In particular, for prime [math]\displaystyle{ p }[/math], [math]\displaystyle{ \mathbb{Z}_p }[/math] is a field. This can be verified by Fermat's little theorem. Sometimes, [math]\displaystyle{ \mathbb{Z}_p }[/math] as a field is also denoted as [math]\displaystyle{ \mathbb{Z}/p\mathbb{Z} }[/math] or [math]\displaystyle{ \mathsf{GF}(p) }[/math].

A finite field of order [math]\displaystyle{ q }[/math] (which means the size of the finite set [math]\displaystyle{ S }[/math] is [math]\displaystyle{ q }[/math]) is usually written as [math]\displaystyle{ \mathsf{GF}(q) }[/math], called the Galois field of order [math]\displaystyle{ q }[/math].