Thermal conductivity

From TCS Wiki
Revision as of 20:52, 19 April 2017 by 47.151.128.174 (talk) (fixed typo in word "conductors")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Thermal conductivity is the ability of a material to conduct heat. Metals are good at heat conduction. They are good conductors of heat. Gasses are also good conductors of heat.

Thermal resistivity is the opposite of thermal conductivity. This means not conducting heat much. Materials with high resistivity are called "thermal insulators" and are used in clothing, thermoses, home insulation, and cars to keep people warm or in refrigerators, freezers, and thermoses to keep things cold.

Thermal conductivity is often represented by the Greek letter "kappa", [math]\displaystyle{ \kappa }[/math]. The units of thermal conductivity are watts per meter-kelvin. Watts are a measure of power, meters are a measure of length, and kelvins are a measure of temperature. From the units, we can see that thermal conductivity is a measure of how much power moves through a distance due to a temperature difference.

Some great thermal insulators are: Vacuum, Aerogel, Polyurethane

Some great thermal conductors are: Silver, Copper, Diamond

Silver is one of the most thermally conductive materials (and is relatively common), and because of this there are some cool experiments you can do with silver that show extremely well how thermal conduction works.

One example is when you put 2 spoons in boiling water, one spoon is steel and the other is silver. When you take the spoons out of the boiling water, the silver spoon is hotter than the steel spoon. The reason for this is that silver conducts heat better than steel. The silver spoon will also cool off faster because of this, as it is better at releasing heat.

Another interesting example of silver's amazing thermally conductive properties is if you put different materials on ice cubes. Putting an iron washer will just sit there and slowly become colder, putting a copper penny on will melt through the ice cube and become colder faster, and putting a silver dime, spoon, or ring on the ice cube will sink into it almost as though the ice cube were made of thick syrup, and the silver will become ice cold almost instantly. Again, this is because the silver is really good at drawing heat from the air and giving it to the ice cube. Copper is also good at this, but not as much as silver.



Template:Sci-stub