随机算法 (Spring 2014)/The Monte Carlo Method and 高级算法 (Fall 2018): Difference between pages

From TCS Wiki
(Difference between pages)
Jump to navigation Jump to search
imported>Etone
 
imported>Etone
No edit summary
 
Line 1: Line 1:
= Parameter Estimation =
{{Infobox
Consider the following abstract problem of parameter estimation.
|name        = Infobox
|bodystyle    =  
|title        = <font size=3>高级算法
<br>Advanced Algorithms</font>
|titlestyle  =


Let <math>U</math> be a finite set of known size, and let <math>G\subseteq U</math>. We want to estimate the ''parameter'' <math>|G|</math>, i.e. the size of <math>G</math>, or equivalently, the density (or frequency) <math>\frac{|G|}{|U|}</math>.
|image        =
|imagestyle  =
|caption      =
|captionstyle =
|headerstyle  = background:#ccf;
|labelstyle  = background:#ddf;
|datastyle    =


We assume two devices:
|header1 =Instructor
* A '''uniform sampler''' <math>\mathcal{U}</math>, which uniformly and independently samples a member of <math>U</math> upon each calling.
|label1  =
* A '''membership oracle''' of <math>G</math>, denoted <math>\mathcal{O}</math>. Given as the input an <math>x\in U</math>, <math>\mathcal{O}(x)</math> indicates whether or not <math>x</math> is a member of <math>G</math>.
|data1  =
 
|header2 =
Equipped by <math>\mathcal{U}</math> and <math>\mathcal{O}</math>, we can have the following '''Monte Carlo method''':
|label2 =
*Choose <math>N</math> independent samples from <math>U</math> by the uniform sampler <math>\mathcal{U}</math>, represented by the random variables <math>X_1,X_2,\ldots, X_N</math>.
|data2  = 尹一通<br>郑朝栋
* Let <math>Y_i</math> be the indicator random variable defined as <math>Y_i=\mathcal{O}(X_i)</math>, namely, <math>Y_i</math> indicates whether <math>X_i\in G</math>.
|header3 =  
* Define the estimator random variable
|label3  = Email
::<math>Z=\frac{|U|}{N}\sum_{i=1}^N Y_i.</math>
|data3  = yinyt@nju.edu.cn chaodong@nju.edu.cn 
 
|header4 =
It is easy to see that <math>\mathbf{E}[Z]=|G|</math> and we might hope that with high probability the value of <math>Z</math> is close to <math>|G|</math>. Formally, <math>Z</math> is called an '''<math>\epsilon</math>-approximation''' of <math>|G|</math> if
|label4= office
:<math>
|data4= 计算机系 804
(1-\epsilon)|G|\le Z\le (1+\epsilon)|G|.
|header5 = Class
</math>
|label5  =
 
|data5  =
The following theorem states that the probabilistic accuracy of the estimation depends on the number of samples and the ratio between <math>|G|</math> and <math>|U|</math>
|header6 =
 
|label6  = Class meetings
{{Theorem
|data6  = Wednesday, 8am-10am <br> 仙I-319
|Theorem (estimator theorem)|
|header7 =
:Let <math>\alpha=\frac{|G|}{|U|}</math>. Then the Monte Carlo method yields an <math>\epsilon</math>-approximation to <math>|G|</math> with probability at least <math>1-\delta</math> provided
|label7  = Place
::<math>N\ge\frac{4}{\epsilon^2 \alpha}\ln\frac{2}{\delta}</math>.
|data7  =
}}
|header8 =
{{Proof|  
|label8  = Office hours
Recall that <math>Y_i</math> indicates whether the <math>i</math>-th sample is in <math>G</math>. Let <math>Y=\sum_{i=1}^NY_i</math>. Then we have <math>Z=\frac{|U|}{N}Y</math>, and hence the event <math>(1-\epsilon)|G|\le Z\le (1+\epsilon)|G|</math> is equivalent to that <math>(1-\epsilon)\frac{|G|}{|U|}N\le Y\le (1+\epsilon)\frac{|G|}{|U|}N</math>. Note that each <math>Y_i</math> is a Bernoulli trial that succeeds with probability <math>\frac{|G|}{|U|}</math>, thus <math>\mathbb{E}[Y]=\frac{|G|}{|U|}N</math>. Then the rest is due to Chernoff bound.}}
|data8  = Wednesday, 10am-12pm <br>计算机系 804(尹一通)、302(郑朝栋)
 
|header9 = Textbooks
A counting algorithm for the set <math>G</math> has to deal with the following three issues:
|label9  =
# Implement the membership oracle <math>\mathcal{O}</math>. This is usually straightforward, or assumed by the model.
|data9  =
# Implement the uniform sampler <math>\mathcal{U}</math>. This can be straightforward or highly nontrivial, depending on the problem.
|header10 =
# Deal with exponentially small <math>\alpha=\frac{|G|}{|U|}</math>. This requires us to cleverly choose the universe <math>U</math>. And this part usually uses some beautiful ideas.
|label10  =  
 
|data10  = [[File:MR-randomized-algorithms.png|border|100px]]
= Counting DNFs =
|header11 =
A disjunctive normal form (DNF) formular is a disjunction (OR) of clauses, where each clause is a conjunction (AND) of literals. For example:
|label11  =
:<math>(x_1\wedge \overline{x_2}\wedge x_3)\vee(x_2\wedge x_4)\vee(\overline{x_1}\wedge x_3\wedge x_4)</math>.
|data11  = Motwani and Raghavan. <br>''Randomized Algorithms''.<br> Cambridge Univ Press, 1995.
Note the difference from the conjunctive normal forms (CNF).
|header12 =
 
|label12  =
Given a DNF formular <math>\phi</math> as the input, the problem is to count the number of satisfying assignments of <math>\phi</math>. This problem is [http://en.wikipedia.org/wiki/Sharp-P-complete '''#P-complete''']. So we do not expect to have a polynomial-time algorithm for exact solving the problem. Instead we are seeking for approximation algorithms. Interestingly, even though the computational complexity of the problem is so high, it admits some very nice approximation algorithm which has very good approximation ratio (theoretically speaking). We need to introduce some general concepts for approximation algorithms.
|data12  = [[File:Approximation_Algorithms.jpg|border|100px]]
 
|header13 =
{{Theorem|FPTAS (Fully Polynomial-Time Approximation Scheme)|
|label13  =
:Consider a computational problem <math>f:\{0,1\}^*\to \mathbb{Z}^+</math> whose outputs are positive integers.
|data13  =  Vazirani. <br>''Approximation Algorithms''. <br> Springer-Verlag, 2001.
 
|belowstyle = background:#ddf;
:A '''FPTAS (fully polynomial-time approximation scheme)''' for <math>f</math> is an algorithm <math>\mathcal{A}</math> that takes the following inputs:
|below =
:*an input instance <math>x</math> of problem <math>f</math>, which we use <math>n=|x|</math> to denote its length;
:*a real number <math>0<\epsilon<1</math>;
:and in time polynomial in both <math>n</math> and <math>\frac{1}{\epsilon}</math>, returns an output <math>\mathcal{A}(x,\epsilon)</math> such that
::<math>
(1-\epsilon)f(x)\le\mathcal{A}(x,\epsilon)\le (1+\epsilon)f(x).
</math>
}}
 
The adverb "fully" stresses the polynomial reliance on not just the input size <math>n</math> but also the approximation parameter <math>\frac{1}{\epsilon}</math>. An FPTAS may approximate the true value of the output within any accuracy in polynomial time, though the polynomial becomes larger when the approximation is more accurate. Moreover, the running time grows just polynomially with repeat to the accuracy bounds. Theoretically speaking, FPTAS is the best we can get for computational hard problems, though in practice sometimes the polynomial bound might be too large even for a moderate <math>\epsilon</math>.
 
The FPRAS (fully polynomial-time randomized approximation scheme), on the other hand, is the randomized relaxation of FPTAS.
 
{{Theorem|FPRAS (Fully Polynomial-time Randomized Approximation Scheme)|
:Consider a computational problem <math>f:\{0,1\}^*\to \mathbb{Z}^+</math> whose outputs are positive integers.
 
:A '''FPRAS (fully polynomial-time randomized approximation scheme)''' for <math>f</math> is a randomized algorithm <math>\mathcal{A}</math> that takes the following inputs:
:*an input instance <math>x</math> of problem <math>f</math>, which we use <math>n=|x|</math> to denote its length;
:*two real numbers <math>0<\epsilon,\delta<1</math>;
:and in time polynomial in <math>n</math>, <math>\frac{1}{\epsilon}</math>, and <math>\log\frac{1}{\delta}</math>, returns an output <math>\mathcal{A}(x,\epsilon,\delta)</math> such that
::<math>
\Pr\left[(1-\epsilon)f(x)\le\mathcal{A}(x,\epsilon,\delta)\le (1+\epsilon)f(x)\right]\ge 1-\delta.
</math>
}}
 
Note that the reliance on the ''confidence error'' <math>\delta</math> is polynomial in <math>\log\frac{1}{\delta}</math>, instead of <math>\frac{1}{\delta}</math>. This is because due to the Chernoff bound, the confidence error can be reduced in an exponential rate by independent repetitions. This motivates the following simpler but equivalent definition of FPRAS, which only considers the special confidence error <math>\delta=\frac{1}{3}</math>. Apparently, this is a more natural way to relax the FPTAS to randomized algorithms as it mimics the way of generalizing class '''P''' to '''BPP''' for decision problems. If you are familiar with the Chernoff bound, it is quite easy to observe the equivalence between the following definition and the above one. And this simple definition is also easier to check (you only need to verify the case for the error <math>\delta=\frac{1}{3}</math>), which makes it more convenient to apply.
 
{{Theorem|FPRAS (equivalent simple version)|
:Consider a computational problem <math>f:\{0,1\}^*\to \mathbb{Z}^+</math> whose outputs are positive integers.
 
:A '''FPRAS (fully polynomial-time randomized approximation scheme)''' for <math>f</math> is a randomized algorithm <math>\mathcal{A}</math> that takes the following inputs:
:*an input instance <math>x</math> of problem <math>f</math>, which we use <math>n=|x|</math> to denote its length;
:*a real number <math>0<\epsilon<1</math>;
:and in time polynomial in <math>n</math> and <math>\frac{1}{\epsilon}</math>, returns an output <math>\mathcal{A}(x,\epsilon)</math> such that
::<math>
\Pr\left[(1-\epsilon)f(x)\le\mathcal{A}(x,\epsilon)\le (1+\epsilon)f(x)\right]\ge \frac{2}{3}.
</math>
}}
}}


The Monte Carlo method for the parameter estimation problem would give us an FPRAS if the sampler and membership oracle are poly-time realizable and the fraction <math>\alpha=\frac{|G|}{|U|}</math> is bounded from below by a <math>\frac{1}{\mathrm{poly}(n)}</math>.
This is the webpage for the ''Advanced Algorithms'' class of fall 2018. Students who take this class should check this page periodically for content updates and new announcements.  
 
However, for the DNF counting problem, naively applying the Monte Carlo method (treat the set of all <math>2^n</math> truth assignments as <math>U</math> and the set of DNF solutions as <math>G</math>) will not give a good algorithm. The problem is that the fraction <math>\alpha=\frac{|G|}{|U|}</math> can be exponentially small:
:Suppose that there are <math>n</math> variables. Let <math>U=\{\mathrm{true},\mathrm{false}\}^n</math> be the set of all truth assignments of the <math>n</math> variables. Let <math>G=\{x\in U\mid \phi(x)=\mathrm{true}\}</math> be the set of satisfying assignments for <math>\phi</math>. The straightforward use of Monte Carlo method samples <math>N</math> assignments from <math>U</math> and check how many of them satisfy <math>\phi</math>. This algorithm fails when <math>|G|/|U|</math> is exponentially small, namely, when exponentially small fraction of the assignments satisfy the input DNF formula.
 
So instead of naively considering the space of satisfying solutions and the space of all solutions, we represent the space of satisfying solutions to a DNF formula as a union of sets of satisfying solutions to the individual clauses, and count this union of sets. This gives us an abstract problem called the union of sets problem.
 
==The union of sets problem==
We reformulate the DNF counting problem in a more abstract framework, called the '''union of sets''' problem.  
 
Let <math>V</math> be a finite universe. We are given <math>m</math> subsets <math>H_1,H_2,\ldots,H_m\subseteq V</math>. The following assumptions hold:
# For all <math>i</math>, <math>|H_i|</math> is computable in poly-time.
# It is possible to sample uniformly from each individual <math>H_i</math>.
# For any <math>x\in V</math>, it can be determined in poly-time whether <math>x\in H_i</math>.
 
The goal is to compute the size of <math>H=\bigcup_{i=1}^m H_i</math>.


DNF counting can be interpreted in this general framework as follows. Suppose that the DNF formula <math>\phi</math> is defined on <math>n</math> variables, and <math>\phi</math> contains <math>m</math> clauses <math>C_1,C_2,\ldots,C_m</math>, where clause <math>C_i</math> has <math>k_i</math> literals. Without loss of generality, we assume that in each clause, each variable appears at most once.
= Announcement =
* <math>V</math> is the set of all assignments.
* (2018/9/5) 新学期第一次上课。
*Each <math>H_i</math> is the set of satisfying assignments for the <math>i</math>-th clause <math>C_i</math> of the DNF formular <math>\phi</math>. Then the union of sets <math>H=\bigcup_i H_i</math> gives the set of satisfying assignments for <math>\phi</math>.
* Each clause <math>C_i</math> is a conjunction (AND) of literals. It is not hard to see that <math>|H_i|=2^{n-k_i}</math>, which is efficiently computable.
* Sampling from an <math>H_i</math> is simple: we just fix the assignments of the <math>k_i</math> literals of that clause, and sample uniformly and independently the rest <math>(n-k_i)</math> variable assignments.
* For each assignment <math>x</math>, it is easy to check whether it satisfies a clause <math>C_i</math>, thus it is easy to determine whether <math>x\in H_i</math>.


==The coverage algorithm==
= Course info =
We now introduce the coverage algorithm for the union of sets problem.
* '''Instructor ''': 尹一通、郑朝栋
:*email: yinyt@nju.edu.cn, chaodong@nju.edu.cn
* '''Class meeting''': Wednesday 8am-10am, 仙I-319.
* '''Office hour''': Wednesday 10am-12pm, 计算机系 804.


Consider the multiset <math>U</math> defined by
= Syllabus =
:<math>U=H_1\uplus H_2\uplus\cdots \uplus H_m</math>,
where <math>\uplus</math> denotes the multiset union. It is more convenient to define <math>U</math> as the set
:<math>U=\{(x,i)\mid x\in H_i\}</math>.
For each <math>x\in H</math>, there may be more than one instances of <math>(x,i)\in U</math>. We can choose a unique representative among the multiple instances <math>(x,i)\in U</math> for the same <math>x\in H</math>, by choosing the <math>(x,i)</math> with the minimum <math>i</math>, and form a set <math>G</math>.


Formally, <math>G=\{(x,i)\in U\mid \forall (x,j)\in U, j\le i\}</math>. Every <math>x\in H</math> corresponds to a unique <math>(x,i)\in G</math> where <math>i</math> is the smallest among <math>x\in H_i</math>.
=== 先修课程 Prerequisites ===
* 必须:离散数学,概率论,线性代数。
* 推荐:算法设计与分析。


It is obvious that <math>G\subseteq U</math> and
=== Course materials ===
:<math>|G|=|H|</math>.
* [[高级算法 (Fall 2018) / Course materials|<font size=3>教材和参考书</font>]]


Therefore, estimation of <math>|H|</math> is reduced to estimation of <math>|G|</math> with <math>G\subseteq U</math>. Then <math>|G|</math> can have an <math>\epsilon</math>-approximation with probability <math>(1-\delta)</math> in poly-time, if we can uniformly sample from <math>U</math> and <math>|G|/|U|</math> is suitably small.
=== 成绩 Grades ===
* 课程成绩:本课程将会有若干次作业和一次期末考试。最终成绩将由平时作业成绩和期末考试成绩综合得出。
* 迟交:如果有特殊的理由,无法按时完成作业,请提前联系授课老师,给出正当理由。否则迟交的作业将不被接受。


An uniform sample from <math>U</math> can be implemented as follows:
=== <font color=red> 学术诚信 Academic Integrity </font>===
* generate an <math>i\in\{1,2,\ldots,m\}</math> with probability <math>\frac{|H_i|}{\sum_{i=1}^m|H_i|}</math>;
学术诚信是所有从事学术活动的学生和学者最基本的职业道德底线,本课程将不遗余力的维护学术诚信规范,违反这一底线的行为将不会被容忍。
* uniformly sample an <math>x\in H_i</math>, and return <math>(x,i)</math>.


It is easy to see that this gives a uniform member of <math>U</math>. The above sampling procedure is poly-time because each <math>|H_i|</math> can be computed in poly-time, and sampling uniformly from each <math>H_i</math> is poly-time.
作业完成的原则:署你名字的工作必须由你完成。允许讨论,但作业必须独立完成,并在作业中列出所有参与讨论的人。不允许其他任何形式的合作——尤其是与已经完成作业的同学“讨论”。


We now only need to lower bound the ratio
本课程将对剽窃行为采取零容忍的态度。在完成作业过程中,对他人工作(出版物、互联网资料、其他人的作业等)直接的文本抄袭和对关键思想、关键元素的抄袭,按照 [http://www.acm.org/publications/policies/plagiarism_policy ACM Policy on Plagiarism]的解释,都将视为剽窃。剽窃者成绩将被取消。如果发现互相抄袭行为,<font color=red> 抄袭和被抄袭双方的成绩都将被取消</font>。因此请主动防止自己的作业被他人抄袭。
:<math>\alpha=\frac{|G|}{|U|}</math>.


We claim that
学术诚信影响学生个人的品行,也关乎整个教育系统的正常运转。为了一点分数而做出学术不端的行为,不仅使自己沦为一个欺骗者,也使他人的诚实努力失去意义。让我们一起努力维护一个诚信的环境。
:<math>\alpha\ge\frac{1}{m}</math>.
It is easy to see this, because each <math>x\in H</math> has at most <math>m</math> instances of <math>(x,i)</math> in <math>U</math>, and we already know that <math>|G|=|H|</math>.


Due to the estimator theorem, this needs <math>\frac{4m}{\epsilon^2}\ln\frac{2}{\delta}</math> uniform random samples from <math>U</math>.
= Assignments =
* TBA


This gives the coverage algorithm for the abstract problem of the union of sets. The DNF counting is a special case of it.
= Lecture Notes =
# [[高级算法 (Fall 2018)/Min-Cut and Max-Cut|Min-Cut and Max-Cut]]
#:  [[高级算法 (Fall 2018)/Probability Basics|Probability basics]]

Revision as of 14:15, 4 September 2018

高级算法
Advanced Algorithms
Instructor
尹一通
郑朝栋
Email yinyt@nju.edu.cn chaodong@nju.edu.cn
office 计算机系 804
Class
Class meetings Wednesday, 8am-10am
仙I-319
Office hours Wednesday, 10am-12pm
计算机系 804(尹一通)、302(郑朝栋)
Textbooks
Motwani and Raghavan.
Randomized Algorithms.
Cambridge Univ Press, 1995.
Vazirani.
Approximation Algorithms.
Springer-Verlag, 2001.
v · d · e

This is the webpage for the Advanced Algorithms class of fall 2018. Students who take this class should check this page periodically for content updates and new announcements.

Announcement

  • (2018/9/5) 新学期第一次上课。

Course info

  • Instructor : 尹一通、郑朝栋
  • email: yinyt@nju.edu.cn, chaodong@nju.edu.cn
  • Class meeting: Wednesday 8am-10am, 仙I-319.
  • Office hour: Wednesday 10am-12pm, 计算机系 804.

Syllabus

先修课程 Prerequisites

  • 必须:离散数学,概率论,线性代数。
  • 推荐:算法设计与分析。

Course materials

成绩 Grades

  • 课程成绩:本课程将会有若干次作业和一次期末考试。最终成绩将由平时作业成绩和期末考试成绩综合得出。
  • 迟交:如果有特殊的理由,无法按时完成作业,请提前联系授课老师,给出正当理由。否则迟交的作业将不被接受。

学术诚信 Academic Integrity

学术诚信是所有从事学术活动的学生和学者最基本的职业道德底线,本课程将不遗余力的维护学术诚信规范,违反这一底线的行为将不会被容忍。

作业完成的原则:署你名字的工作必须由你完成。允许讨论,但作业必须独立完成,并在作业中列出所有参与讨论的人。不允许其他任何形式的合作——尤其是与已经完成作业的同学“讨论”。

本课程将对剽窃行为采取零容忍的态度。在完成作业过程中,对他人工作(出版物、互联网资料、其他人的作业等)直接的文本抄袭和对关键思想、关键元素的抄袭,按照 ACM Policy on Plagiarism的解释,都将视为剽窃。剽窃者成绩将被取消。如果发现互相抄袭行为, 抄袭和被抄袭双方的成绩都将被取消。因此请主动防止自己的作业被他人抄袭。

学术诚信影响学生个人的品行,也关乎整个教育系统的正常运转。为了一点分数而做出学术不端的行为,不仅使自己沦为一个欺骗者,也使他人的诚实努力失去意义。让我们一起努力维护一个诚信的环境。

Assignments

  • TBA

Lecture Notes

  1. Min-Cut and Max-Cut
    Probability basics