高级算法 (Fall 2016)/Min-Cut and Max-Cut and 高级算法 (Fall 2018): Difference between pages

From TCS Wiki
(Difference between pages)
Jump to navigation Jump to search
imported>Etone
 
imported>Etone
No edit summary
 
Line 1: Line 1:
<font color=red size=3> under construction</font>[[File:Under_construction.png‎|30px]]
{{Infobox
|name        = Infobox
|bodystyle    =
|title        = <font size=3>高级算法
<br>Advanced Algorithms</font>
|titlestyle  =


= Graph Cut =
|image        =  
Let <math>G(V, E)</math> be an undirected graph. A subset <math>C\subseteq E</math> of edges is a '''cut''' of graph <math>G</math> if <math>G</math> becomes ''disconnected'' after deleting all edges in <math>C</math>.
|imagestyle  =
|caption      =
|captionstyle =
|headerstyle  = background:#ccf;
|labelstyle  = background:#ddf;
|datastyle    =


More formally, a pair of ''disjoint'' subsets <math>S,T\subseteq V</math> of vertices is called a '''bipartition''' of <math>V</math> if <math>S</math> and <math>T</math> are not empty and <math>S\cup T=V</math>.
|header1 =Instructor
Given a bipartition <math>\{S,T\}</math> of <math>V</math>, we denote by
|label1  =
:<math>E(S,T)=\{uv\in E\mid u\in S, v\in T\}</math>
|data1  =  
the set of "crossing edges" with one endpoint in each of <math>S</math> and <math>T</math>.
|header2 =  
 
|label2  =  
Then every cut <math>C\subseteq E</math> in <math>G</math> corresponds to a
|data2  = 尹一通<br>郑朝栋
:<math>C=E(S,T),\quad \{S,T\}\mbox{ is a bipartition of }V</math>.
|header3 =
 
|label3  = Email
Given a graph <math>G</math>, there might be many cuts in <math>G</math>, and we are interested in finding its '''minimum''' or '''maximum''' cut.
|data3  = yinyt@nju.edu.cn chaodong@nju.edu.cn 
 
|header4 =
= Min-Cut =
|label4= office
The '''min-cut problem''', also called the '''global minimum cut problem''', is defined as follows.
|data4= 计算机系 804
{{Theorem|Min-cut problem|
|header5 = Class
*'''Input''': an undirected graph <math>G(V,E)</math>;
|label5  =
*'''Output''': a cut <math>C</math> in <math>G</math> with the smallest size <math>|C|</math>.
|data5  =  
}}
|header6 =
 
|label6  = Class meetings
Equivalently, the problem asks to find a bipartition of <math>V</math> into disjoint non-empty subsets <math>S</math> and <math>T</math> that minimizes <math>|E(S,T)|</math>.
|data6  = Wednesday, 8am-10am <br> 仙I-319
 
|header7 =
We consider the problem in a slightly more generalized setting, where the input graphs <math>G</math> can be '''multi-graphs''', meaning that there could be multiple edges between two vertices <math>u</math> and <math>v</math>. We call such edges the '''parallel edges'''. The cuts in multi-graphs are defined in the same way as before, and the cost of a cut <math>C</math> is given by the total number of edges (including parallel edges) in <math>C</math>. Equivalently, one may think of a multi-graph as a graph with integer edge weights, and the cost of a cut <math>C</math> is the total weights of all edges in <math>C</math>.
|label7  = Place
 
|data7  =
A canonical deterministic algorithm for this problem is through the [http://en.wikipedia.org/wiki/Max-flow_min-cut_theorem max-flow min-cut theorem]. The max-flow algorithm finds us a minimum '''<math>s</math>-<math>t</math> cut''', which disconnects a '''source''' <math>s\in V</math> from a '''sink''' <math>t\in V</math>, both specified as part of the input. A global min cut can be found by exhaustively finding the minimum <math>s</math>-<math>t</math> cut for an arbitrarily fixed source <math>s</math> and all possible sink <math>t\neq s</math>. This takes <math>(n-1)\times</math>max-flow time.
|header8 =
 
|label8  = Office hours
The fastest known deterministic algorithm for the minimum cut problem on multi-graphs is the [https://en.wikipedia.org/wiki/Stoer–Wagner_algorithm Stoer–Wagner algorithm], which achieves an <math>O(mn+n^2\log n)</math> time complexity.
|data8  = Wednesday, 10am-12pm <br>计算机系 804(尹一通)、302(郑朝栋)
 
|header9 = Textbooks
If we restrict the input to be '''simple graphs''' (meaning there is no parallel edges) with no edge weight, there are better algorithms. The [http://delivery.acm.org/10.1145/2750000/2746588/p665-kawarabayashi.pdf?ip=114.212.86.114&id=2746588&acc=ACTIVE%20SERVICE&key=BF85BBA5741FDC6E%2E180A41DAF8736F97%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=839435129&CFTOKEN=67928165&__acm__=1474187635_eafe662feeb838ca5ece2f6b56715177 most recent one] was published in STOC 2015, achieving a near-linear (in the number of edges) time complexity.
|label9  =
 
|data9  =
== Karger's ''Contraction'' algorithm ==
|header10 =
We will describe a simple and elegant randomized algorithm for the min-cut problem. The algorithm is due to [http://people.csail.mit.edu/karger/ David Karger].
|label10  =
 
|data10  = [[File:MR-randomized-algorithms.png|border|100px]]
Let <math>G(V, E)</math> be a '''multi-graph''', which allows more than one '''parallel edges''' between two distinct vertices <math>u</math> and <math>v</math> but does not allow any '''self-loops''': the edges that adjoin a vertex to itself. A multi-graph <math>G</math> can be represented by an adjacency matrix <math>A</math>, in the way that each non-diagonal entry <math>A(u,v)</math> takes nonnegative integer values instead of just 0 or 1, representing the number of parallel edges between <math>u</math> and <math>v</math> in <math>G</math>, and all diagonal entries <math>A(v,v)=0</math> (since there is no self-loop).
|header11 =
 
|label11  =  
Given a multi-graph <math>G(V,E)</math> and an edge <math>e\in E</math>, we define the following '''contraction''' operator Contract(<math>G</math>, <math>e</math>), which transform <math>G</math> to a new multi-graph.
|data11  = Motwani and Raghavan. <br>''Randomized Algorithms''.<br> Cambridge Univ Press, 1995.
{{Theorem|The contraction operator ''Contract''(<math>G</math>, <math>e</math>)|
|header12 =
:say <math>e=uv</math>:
|label12  =  
:*for every edge (no matter parallel or not) in the form of <math>uw</math> or <math>vw</math> that connects one of <math>\{u,v\}</math> to a vertex <math>w\in V\setminus\{u,v\}</math> in the graph other than <math>u,v</math>, replace it by a new edge <math>xw</math>;
|data12  = [[File:Approximation_Algorithms.jpg|border|100px]]
:*the reset of the graph does not change.
|header13 =
}}
|label13  =
 
|data13  =  Vazirani. <br>''Approximation Algorithms''. <br> Springer-Verlag, 2001.
In other words, the <math>Contract(G,uv)</math> merges the two vertices <math>u</math> and <math>v</math> into a new vertex <math>x</math> whose incident edges preserves the edges incident to <math>u</math> or <math>v</math> in the original graph <math>G</math> except for the parallel edges between them. Now you should realize why we consider multi-graphs instead of simple graphs, because even if we start with a simple graph without parallel edges, the contraction operator may create parallel edges.
|belowstyle = background:#ddf;
 
|below =
The contraction operator is illustrated by the following picture:
[[Image:Contract.png|600px|center]]
 
Karger's algorithm uses a simple idea:
*At each step we randomly select an edge in the current multi-graph to contract until there are only two vertices left.
*The parallel edges between these two remaining vertices must be a cut of the original graph.
*We return this cut and hope that with good chance this gives us a minimum cut.
The following is the pseudocode for Karger's algorithm.
{{Theorem|''RandomContract'' (Karger 1993)|
:'''Input:''' multi-graph <math>G(V,E)</math>;
:
:while <math>|V|>2</math> do
:* choose an edge <math>uv\in E</math> uniformly at random;
:* <math>G=Contract(G,uv)</math>;
:return <math>C=E</math> (the parallel edges between the only two vertices in <math>V</math>);
}}
 
Another way of looking at the contraction operator Contract(<math>G</math>,<math>e</math>) is that we are dealing with classes of vertices. Let <math>V=\{v_1,v_2,\ldots,v_n\}</math> be the set of all vertices. We start with <math>n</math> vertex classes <math>S_1,S_2,\ldots, S_n</math> with each class <math>S_i=\{v_i\}</math> contains one vertex. By calling <math>Contract(G,uv)</math>, where <math>u\in S_i</math> and <math>v\in S_j</math> for distinct <math>i\neq j</math>, we take union of <math>S_i</math> and <math>S_j</math>. The edges in the contracted multi-graph are the edges that cross between different vertex classes.
 
== Analysis of accuracy ==
For convenience, we assume that each edge has a unique "identity" <math>e</math>. And when an edge <math>uv\in E</math> is contracted to new vertex <math>x</math>, and each adjacent edge <math>uw</math> of <math>u</math> (or adjacent edge <math>vw</math> of <math>v</math>) is replaced by <math>xw</math>, the identity <math>e</math> of the edge <math>uw</math> (or <math>vw</math>) is transfered to the new edge <math>xw</math> replacing it. When referring a cut <math>C</math>, we consider <math>C</math> as a set of edge identities <math>e</math>, so that a cut <math>C</math> is changed by the algorithm only if some of its edges are removed during contraction.
 
We first prove some lemma.
 
{{Theorem
|Lemma 1|
:If <math>C</math> is a cut in a multi-graph <math>G</math> and <math>e\not\in C</math>, then <math>C</math> is still a cut in <math>G'=contract(G,e)</math>.
}}
{{Proof|
It is easy to verify that <math>C</math> is a cut in <math>G'=contract(G,e)</math> if none of its edges is lost during the contraction.
Since <math>C</math> is a cut in <math>G(V,E)</math>, there exists a nonempty vertex set <math>S\subset V</math> and its complement <math>\bar{S}=V\setminus S</math> such that <math>C=\{uv\mid u\in S, v\in\bar{S}\}</math>. And if <math>e\not\in C</math>, it must hold that either <math>e\in G[S]</math> or <math>e\in G[\bar{S}]</math> where <math>G[S]</math> and <math>G[\bar{S}]</math> are the subgraphs induced by <math>S</math> and <math>\bar{S}</math> respectively. In both cases none of edges in <math>C</math> is removed in <math>G'=contract(G,e)</math>.
}}
 
{{Theorem
|Lemma 2|
: The size of min-cut in <math>G'=contract(G,e)</math> is at least as large as the size of min-cut in <math>G</math>, i.e. contraction never reduces the size of min-cut.
}}
{{Proof|
: Note that every cut in the contracted graph <math>G'</math> is also a cut in the original graph <math>G</math>.
}}
}}


{{Theorem
This is the webpage for the ''Advanced Algorithms'' class of fall 2018. Students who take this class should check this page periodically for content updates and new announcements.  
|Lemma 3|
:If <math>C</math> is a min-cut in a multi-graph <math>G(V,E)</math>, then <math>|E|\ge \frac{|V||C|}{2}</math>.
}}
{{Proof|
:It must hold that the degree of each vertex <math>v\in V</math> is at least <math>|C|</math>, or otherwise the set of adjacent edges of <math>v</math> forms a cut which separates <math>v</math> from the rest of <math>V</math> and has size less than <math>|C|</math>, contradicting the assumption that <math>|C|</math> is a min-cut. And the bound <math>|E|\ge \frac{|V||C|}{2}</math> follows directly from the fact that every vertex in <math>G</math> has degree at least <math>|C|</math>.
}}


For a multigraph <math>G(V, E)</math>, fixed a minimum cut <math>C</math> (there might be more than one minimum cuts), we analyze the probability that <math>C</math> is returned by the above algorithm.
= Announcement =
* (2018/9/5) 新学期第一次上课。


Initially <math>|V|=n</math>. We say that the min-cut <math>C</math> "survives" a random contraction if none of the edges in <math>C</math> is chosen to be contracted.
= Course info =
After <math>(i-1)</math> contractions, denote the current multigraph as <math>G_i(V_i, E_i)</math>. Supposed that <math>C</math> survives the first <math>(i-1)</math> contractions, according to Lemma 1 and 2, <math>C</math> must be a minimum cut in the current multi-graph <math>G_i</math>. Then due to Lemma 3, the current edge number is <math>|E_i|\ge |V_i||C|/2</math>. Uniformly choosing an edge <math>e\in E_i</math> to contract, the probability that the <math>i</math>th contraction contracts an edge in <math>C</math> is given by:
* '''Instructor ''': 尹一通、郑朝栋
:*email: yinyt@nju.edu.cn, chaodong@nju.edu.cn
* '''Class meeting''': Wednesday 8am-10am, 仙I-319.
* '''Office hour''': Wednesday 10am-12pm, 计算机系 804.


:<math>\begin{align}\Pr_{e\in E_i}[e\in C] &= \frac{|C|}{|E_i|}
= Syllabus =
&\le |C|\cdot\frac{2}{|V_i||C|}
&= \frac{2}{|V_i|}.\end{align}</math>


Therefore, conditioning on that <math>C</math> survives the first <math>(i-1)</math> contractions, the probability that <math>C</math> survives the <math>i</math>th contraction is at least <math>1-2/|V_i|</math>. Note that <math>|V_i|=n-i+1</math>, because each contraction decrease the vertex number by 1.
=== 先修课程 Prerequisites ===
* 必须:离散数学,概率论,线性代数。
* 推荐:算法设计与分析。


The probability that no edge in the minimum cut <math>C</math> is ever contracted is:
=== Course materials ===
 
* [[高级算法 (Fall 2018) / Course materials|<font size=3>教材和参考书</font>]]
:<math>\begin{align}
&\quad\,\prod_{i=1}^{n-2}\Pr[\,C\mbox{ survives all }(n-2)\mbox{ contractions }]\\
&=
\prod_{i=1}^{n-2}\Pr[\,C\mbox{ survives the }i\mbox{-th contraction}\mid C\mbox{ survives the first }(i-1)\mbox{-th contractions}]\\
&\ge
\prod_{i=1}^{n-2}\left(1-\frac{2}{|V_i|}\right) \\
&=
\prod_{i=1}^{n-2}\left(1-\frac{2}{n-i+1}\right)\\
&=
\prod_{k=3}^{n}\frac{k-2}{k}\\
&= \frac{2}{n(n-1)}.
\end{align}</math>
 
This gives the following theorem.
{{Theorem
|Theorem|
: For any multigraph with <math>n</math> vertices, the ''RandomContract'' algorithm returns a minimum cut with probability at least <math>\frac{2}{n(n-1)}</math>.
}}
 
Run ''RandomContract'' independently for <math>n(n-1)/2</math> times and return the smallest cut returned. The probability that a minimum cut is found is at least:
 
:<math>\begin{align}
1-\Pr[\mbox{failed every time}] &= 1-\Pr[{RandomContract}\mbox{ fails}]^{n(n-1)/2} \\
&\ge 1- \left(1-\frac{2}{n(n-1)}\right)^{n(n-1)/2} \\
&\ge 1-\frac{1}{e}.
\end{align}</math>
 
A constant probability!
 
== A Corollary by the Probabilistic Method ==
Karger's algorithm and its analysis implies the following combinatorial theorem regarding the number of distinct minimum cuts in a graph.
{{Theorem|Corollary|
:For any graph <math>G(V,E)</math> of <math>n</math> vertices, the number of distinct minimum cuts in <math>G</math> is at most <math>\frac{n(n-2)}{2}</math>.
}}
{{Proof|
For each minimum cut <math>C</math> in <math>G</math>, we define <math>\mathcal{E}_C</math> to be the event that ''RandomContract'' returns <math>C</math>. Due to the analysis of RandomContract, <math>\Pr[\mathcal{E}_C]\ge \frac{2}{n(n-1)}</math>. The events <math>\mathcal{E}_C</math> are mutually disjoint for distinct <math>C</math> and the event that ''RandomContract'' returns a min-cut is the disjoint union of <math>\mathcal{E}_C</math> over all min-cut <math>C</math>. Therefore,
:<math>
\begin{align}
&\Pr[\mbox{ RandomContract returns a min-cut}]\\
=
&\sum_{\mbox{min-cut }C\mbox{ in }G}\Pr[\mathcal{E}_C]\\
\ge
&\sum_{\mbox{min-cut }C\mbox{ in }G}\frac{2}{n(n-1)},
\end{align}
</math>
which must be no greater than 1 for a well-defined probability space. This means the total number of min-cut in <math>G</math> must be no greater than <math>\frac{n(n-1)}{2}</math>.
}}
Note that the statement of this theorem has no randomness at all, however the proof involves a randomized algorithm. This is an example of [http://en.wikipedia.org/wiki/Probabilistic_method the probabilistic method].
 
== Fast Min-Cut ==
In the analysis of ''RandomContract'', we have the following observation:
* The probability of success is only getting worse when the graph becomes small.
This motivates us to consider the following alternation to the algorithm: first using random contractions to reduce the number of vertices to a moderately small number, and then recursively finding a min-cut in this smaller instance. This seems just a restatement of exactly what we have been doing. Inspired by the idea of boosting the accuracy via independent repetition, here we apply the recursion on ''two'' smaller instances generated independently.
 
The algorithm obtained in this way is called ''FastCut''. We first define a procedure to randomly contract edges until there are <math>t</math> number of vertices left.
 
{{Theorem|''RandomContract''<math>(G, t)</math>|
:while <math>|V|>t</math> do
:* choose an edge <math>uv\in E</math> uniformly at random;
:* <math>G=contract(G,uv)</math>;
:return <math>G</math>;
}}
 
The ''FastCut'' algorithm is recursively defined as follows.
{{Theorem|''FastCut''<math>(G)</math>|
:if <math>|V|\le 6</math> then return a mincut by brute force;
:else let <math>t=\left\lceil1+|V|/\sqrt{2}\right\rceil</math>;
:: <math>G_1=RandomContract(G,t)</math>;
:: <math>G_2=RandomContract(G,t)</math>;
::return the smaller one of <math>FastCut(G_1)</math> and <math>FastCut(G_2)</math>;
}}


As before, all <math>G</math> are multigraphs.
=== 成绩 Grades ===
* 课程成绩:本课程将会有若干次作业和一次期末考试。最终成绩将由平时作业成绩和期末考试成绩综合得出。
* 迟交:如果有特殊的理由,无法按时完成作业,请提前联系授课老师,给出正当理由。否则迟交的作业将不被接受。


Let <math>C</math> be a min-cut in the original multigraph <math>G</math>. By the same analysis as in the case of ''RandomContract'', we have
=== <font color=red> 学术诚信 Academic Integrity </font>===
:<math>
学术诚信是所有从事学术活动的学生和学者最基本的职业道德底线,本课程将不遗余力的维护学术诚信规范,违反这一底线的行为将不会被容忍。
\begin{align}
&\Pr[C\text{ survives all contractions in }RandomContract(G,t)]\\
=
&\prod_{i=1}^{n-t}\Pr[C\text{ survives the }i\text{-th contraction}\mid C\text{ survives the first }(i-1)\text{-th contractions}]\\
\ge
&\prod_{i=1}^{n-t}\left(1-\frac{2}{n-i+1}\right)\\
=
&\prod_{k=t+1}^{n}\frac{k-2}{k}\\
=
&\frac{t(t-1)}{n(n-1)}.
\end{align}
</math>
When <math>t=\left\lceil1+n/\sqrt{2}\right\rceil</math>, this probability is at least <math>1/2</math>.


We use <math>p(n)</math> to denote the probability that <math>C</math> is returned by <math>FastCut(G)</math>, where <math>G</math> is a multigraph of <math>n</math> vertices. We then have the following recursion for <math>p(n)</math>.
作业完成的原则:署你名字的工作必须由你完成。允许讨论,但作业必须独立完成,并在作业中列出所有参与讨论的人。不允许其他任何形式的合作——尤其是与已经完成作业的同学“讨论”。
:<math>
\begin{align}
p(n)
&=
\Pr[C\text{ is returned by }\textit{FastCut}(G)]\\
&=
1-\left(1-\Pr[C\text{ survives in }G_1\wedge C=\textit{FastCut}(G_1)]\right)^2\\
&=
1-\left(1-\Pr[C\text{ survives in }G_1]\Pr[C=\textit{FastCut}(G_1)\mid C\text{ survives in }G_1]\right)^2\\
&\ge
1-\left(1-\frac{1}{2}p\left(\left\lceil1+n/\sqrt{2}\right\rceil\right)\right)^2,
\end{align}
</math>
where the last inequality is due to the fact that <math>\Pr[C\text{ survives all contractions in }RandomContract(G,t)]\ge1/2</math> and our previous discussions in the analysis of ''RandomContract'' that if the min-cut <math>C</math> survives all first <math>(n-t)</math> contractions then <math>C</math> must be a min-cut in the remaining multigraph.


The base case is that  <math>p(n)=1</math> for <math>n\le 6</math>. Solving this recursion of <math>p(n)</math> (or proving by induction) gives us that
本课程将对剽窃行为采取零容忍的态度。在完成作业过程中,对他人工作(出版物、互联网资料、其他人的作业等)直接的文本抄袭和对关键思想、关键元素的抄袭,按照 [http://www.acm.org/publications/policies/plagiarism_policy ACM Policy on Plagiarism]的解释,都将视为剽窃。剽窃者成绩将被取消。如果发现互相抄袭行为,<font color=red> 抄袭和被抄袭双方的成绩都将被取消</font>。因此请主动防止自己的作业被他人抄袭。
:<math>
p(n)=\Omega\left(\frac{1}{\log n}\right).
</math>


Recall that we can implement an edge contraction in <math>O(n)</math> time, thus it is easy to verify the following recursion of time complexity:
学术诚信影响学生个人的品行,也关乎整个教育系统的正常运转。为了一点分数而做出学术不端的行为,不仅使自己沦为一个欺骗者,也使他人的诚实努力失去意义。让我们一起努力维护一个诚信的环境。
:<math>
T(n)=2T\left(\left\lceil1+n/\sqrt{2}\right\rceil\right)+O(n^2),
</math>
where <math>T(n)</math> denotes the running time of <math>FastCut(G)</math> on a multigraph <math>G</math> of <math>n</math> vertices.


Solving the recursion of <math>T(n)</math> with the base case <math>T(n)=O(1)</math> for <math>n\le 6</math>, we have <math>T(n)=O(n^2\log n)</math>.
= Assignments =
* TBA


Therefore, for a multigraph <math>G</math> of <math>n</math> vertices, the algorithm <math>FastCut(G)</math> returns a min-cut in <math>G</math> with probability <math>\Omega\left(\frac{1}{\log n}\right)</math> in time <math>O(n^2\log n)</math>. Repeat this independently for <math>O(log n)</math> times, we have an algorithm which runs in time <math>O(n^2\log^2n)</math> and returns a min-cut with probability <math>1-O(1/n)</math>, a high probability.
= Lecture Notes =
# [[高级算法 (Fall 2018)/Min-Cut and Max-Cut|Min-Cut and Max-Cut]]
#:  [[高级算法 (Fall 2018)/Probability Basics|Probability basics]]

Revision as of 14:15, 4 September 2018

高级算法
Advanced Algorithms
Instructor
尹一通
郑朝栋
Email yinyt@nju.edu.cn chaodong@nju.edu.cn
office 计算机系 804
Class
Class meetings Wednesday, 8am-10am
仙I-319
Office hours Wednesday, 10am-12pm
计算机系 804(尹一通)、302(郑朝栋)
Textbooks
Motwani and Raghavan.
Randomized Algorithms.
Cambridge Univ Press, 1995.
Vazirani.
Approximation Algorithms.
Springer-Verlag, 2001.
v · d · e

This is the webpage for the Advanced Algorithms class of fall 2018. Students who take this class should check this page periodically for content updates and new announcements.

Announcement

  • (2018/9/5) 新学期第一次上课。

Course info

  • Instructor : 尹一通、郑朝栋
  • email: yinyt@nju.edu.cn, chaodong@nju.edu.cn
  • Class meeting: Wednesday 8am-10am, 仙I-319.
  • Office hour: Wednesday 10am-12pm, 计算机系 804.

Syllabus

先修课程 Prerequisites

  • 必须:离散数学,概率论,线性代数。
  • 推荐:算法设计与分析。

Course materials

成绩 Grades

  • 课程成绩:本课程将会有若干次作业和一次期末考试。最终成绩将由平时作业成绩和期末考试成绩综合得出。
  • 迟交:如果有特殊的理由,无法按时完成作业,请提前联系授课老师,给出正当理由。否则迟交的作业将不被接受。

学术诚信 Academic Integrity

学术诚信是所有从事学术活动的学生和学者最基本的职业道德底线,本课程将不遗余力的维护学术诚信规范,违反这一底线的行为将不会被容忍。

作业完成的原则:署你名字的工作必须由你完成。允许讨论,但作业必须独立完成,并在作业中列出所有参与讨论的人。不允许其他任何形式的合作——尤其是与已经完成作业的同学“讨论”。

本课程将对剽窃行为采取零容忍的态度。在完成作业过程中,对他人工作(出版物、互联网资料、其他人的作业等)直接的文本抄袭和对关键思想、关键元素的抄袭,按照 ACM Policy on Plagiarism的解释,都将视为剽窃。剽窃者成绩将被取消。如果发现互相抄袭行为, 抄袭和被抄袭双方的成绩都将被取消。因此请主动防止自己的作业被他人抄袭。

学术诚信影响学生个人的品行,也关乎整个教育系统的正常运转。为了一点分数而做出学术不端的行为,不仅使自己沦为一个欺骗者,也使他人的诚实努力失去意义。让我们一起努力维护一个诚信的环境。

Assignments

  • TBA

Lecture Notes

  1. Min-Cut and Max-Cut
    Probability basics