Randomized Algorithms (Spring 2010)/Expander graphs and rapid mixing random walks: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>WikiSysop
imported>WikiSysop
Line 15: Line 15:
:The '''expansion ratio''' of <math>G</math>, is defined as
:The '''expansion ratio''' of <math>G</math>, is defined as
::<math>
::<math>
\phi(G)=\min_{S:|S|\le\frac{n}{2}}\frac{\partial S}{|S|}.
\phi(G)=\min_{S:|S|\le\frac{n}{2}}\frac{|\partial S|}{|S|}.
</math>
</math>
|}
|}

Revision as of 07:38, 6 May 2010

Mixing Time

Graph Expansion

Expander graphs

We consider undirected graphs [math]\displaystyle{ G(V,E) }[/math]. In addition, we allow multiple edges between two vertices.

Some notations:

  • For [math]\displaystyle{ S,T\subset V }[/math], let [math]\displaystyle{ E(S,T)=\{uv\in E\mid u\in S,v\in T\} }[/math].
  • The Edge Boundary of a set [math]\displaystyle{ S\subset V }[/math], denoted [math]\displaystyle{ \partial S\, }[/math], is [math]\displaystyle{ \partial S = E(S, \bar{S}) }[/math].
Definition (Graph expansion)
The expansion ratio of [math]\displaystyle{ G }[/math], is defined as
[math]\displaystyle{ \phi(G)=\min_{S:|S|\le\frac{n}{2}}\frac{|\partial S|}{|S|}. }[/math]

Expander graphs are [math]\displaystyle{ d }[/math]-regular (multi)graphs with [math]\displaystyle{ d=O(1) }[/math] and [math]\displaystyle{ \phi(G)=\Omega(1) }[/math].

Existence

Suppose that [math]\displaystyle{ d }[/math] is even. We can generate a random [math]\displaystyle{ d }[/math]-regular graph [math]\displaystyle{ G(V,E) }[/math] as follows:

  • Let [math]\displaystyle{ V }[/math] be the vertex set. Uniformly and independently choose [math]\displaystyle{ \frac{d}{2} }[/math] cycles of [math]\displaystyle{ V }[/math].
  • For each vertex [math]\displaystyle{ v }[/math], for every cycle, assuming that the two neighbors of [math]\displaystyle{ v }[/math] in that cycle is [math]\displaystyle{ w }[/math] and [math]\displaystyle{ u }[/math], add two edges [math]\displaystyle{ wv }[/math] and [math]\displaystyle{ uv }[/math] to [math]\displaystyle{ E }[/math].

The resulting [math]\displaystyle{ G(V,E) }[/math] is a multigraph. That is, it may have multiple edges between two vertices. We will show that [math]\displaystyle{ G(V,E) }[/math] is an expander graph with high probability. Formally, for some constant [math]\displaystyle{ d }[/math] and constant [math]\displaystyle{ \alpha }[/math],

[math]\displaystyle{ \Pr[\phi(G)\ge \alpha]=1-o(1) }[/math].

Construction

Computation of graph expansion

Graph spectrum

Rapid Mixing of Random Walks

Conductance and the spectral gap