Randomized Algorithms (Spring 2010)/Expander graphs and rapid mixing random walks: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>WikiSysop
imported>WikiSysop
Line 87: Line 87:
The expansion ratio of a graph is closely related to the [http://en.wikipedia.org/wiki/Cut_(graph_theory)#Sparsest_cut sparsest cut] of the graph, which is the dual problem of the [http://en.wikipedia.org/wiki/Multi-commodity_flow_problem multicommodity flow] problem, both NP-complete. Studies of these two problems revolutionized the area of approximation algorithms.
The expansion ratio of a graph is closely related to the [http://en.wikipedia.org/wiki/Cut_(graph_theory)#Sparsest_cut sparsest cut] of the graph, which is the dual problem of the [http://en.wikipedia.org/wiki/Multi-commodity_flow_problem multicommodity flow] problem, both NP-complete. Studies of these two problems revolutionized the area of approximation algorithms.


We will see right now that although it is hard to compute the expansion ratio exactly, it is possible to approximate it by some efficiently computable algebraic identity of the graph.
We will see right now that although it is hard to compute the expansion ratio exactly, the expansion ratio can be approximated by some efficiently computable algebraic identity of the graph.


== Graph spectrum ==
== Graph spectrum ==

Revision as of 05:50, 7 May 2010

Mixing Time

Graph Expansion

According to wikipedia:

"Expander graphs have found extensive applications in computer science, in designing algorithms, error correcting codes, extractors, pseudorandom generators, sorting networks and robust computer networks. They have also been used in proofs of many important results in computational complexity theory, such as SL=L and the PCP theorem. In cryptography too, expander graphs are used to construct hash functions."

Expander graphs

Consider an undirected (multi)graph [math]\displaystyle{ G(V,E) }[/math], where the parallel edges between two vertices are allowed.

Some notations:

  • For [math]\displaystyle{ S,T\subset V }[/math], let [math]\displaystyle{ E(S,T)=\{uv\in E\mid u\in S,v\in T\} }[/math].
  • The Edge Boundary of a set [math]\displaystyle{ S\subset V }[/math], denoted [math]\displaystyle{ \partial S\, }[/math], is [math]\displaystyle{ \partial S = E(S, \bar{S}) }[/math].
Definition (Graph expansion)
The expansion ratio of an undirected graph [math]\displaystyle{ G }[/math] on [math]\displaystyle{ n }[/math] vertices, is defined as
[math]\displaystyle{ \phi(G)=\min_{\overset{S\subset V}{|S|\le\frac{n}{2}}} \frac{|\partial S|}{|S|}. }[/math]

Expander graphs are [math]\displaystyle{ d }[/math]-regular (multi)graphs with [math]\displaystyle{ d=O(1) }[/math] and [math]\displaystyle{ \phi(G)=\Omega(1) }[/math].

Existence of expander graph

We will show the existence of expander graphs by the probabilistic method. In order to do so, we need to generate random regular graphs.

Suppose that [math]\displaystyle{ d }[/math] is even. We can generate a random [math]\displaystyle{ d }[/math]-regular graph [math]\displaystyle{ G(V,E) }[/math] as follows:

  • Let [math]\displaystyle{ V }[/math] be the vertex set. Uniformly and independently choose [math]\displaystyle{ \frac{d}{2} }[/math] cycles of [math]\displaystyle{ V }[/math].
  • For each vertex [math]\displaystyle{ v }[/math], for every cycle, assuming that the two neighbors of [math]\displaystyle{ v }[/math] in that cycle is [math]\displaystyle{ w }[/math] and [math]\displaystyle{ u }[/math], add two edges [math]\displaystyle{ wv }[/math] and [math]\displaystyle{ uv }[/math] to [math]\displaystyle{ E }[/math].

The resulting [math]\displaystyle{ G(V,E) }[/math] is a multigraph. That is, it may have multiple edges between two vertices. We will show that [math]\displaystyle{ G(V,E) }[/math] is an expander graph with high probability. Formally, for some constant [math]\displaystyle{ d }[/math] and constant [math]\displaystyle{ \alpha }[/math],

[math]\displaystyle{ \Pr[\phi(G)\ge \alpha]=1-o(1) }[/math].

By the probabilistic method, this shows that there exist expander graphs. In fact, the above probability bound shows something much more stronger: it shows that almost every regular graph is an expander.

Recall that [math]\displaystyle{ \phi(G)=\min_{S:|S|\le\frac{n}{2}}\frac{|\partial S|}{|S|} }[/math]. We call such [math]\displaystyle{ S\subset V }[/math] that [math]\displaystyle{ \frac{|\partial S|}{|S|}\lt \alpha }[/math] a "bad [math]\displaystyle{ S }[/math]". Then [math]\displaystyle{ \phi(G)\lt \alpha }[/math] if and only if there exists a bad [math]\displaystyle{ S }[/math] of size at most [math]\displaystyle{ \frac{n}{2} }[/math]. Therefore,

[math]\displaystyle{ \begin{align} \Pr[\phi(G)\lt \alpha] &= \Pr\left[\min_{S:|S|\le\frac{n}{2}}\frac{|\partial S|}{|S|}\lt \alpha\right]\\ &= \sum_{k=1}^\frac{n}{2}\Pr[\,\exists \mbox{bad }S\mbox{ of size }k\,]\\ &\le \sum_{k=1}^\frac{n}{2}\sum_{S\in{V\choose k}}\Pr[\,S\mbox{ is bad}\,] \end{align} }[/math]

Let [math]\displaystyle{ R\subset S }[/math] be the set of vertices in [math]\displaystyle{ S }[/math] which has neighbors in [math]\displaystyle{ \bar{S} }[/math], and let [math]\displaystyle{ r=|R| }[/math]. It is obvious that [math]\displaystyle{ |\partial S|\ge r }[/math], thus, for a bad [math]\displaystyle{ S }[/math], [math]\displaystyle{ r\lt \alpha k }[/math]. Therefore, there are at most [math]\displaystyle{ \sum_{r=1}^{\alpha k}{k \choose r} }[/math] possible choices such [math]\displaystyle{ R }[/math]. For any fixed choice of [math]\displaystyle{ R }[/math], the probability that an edge picked by a vertex in [math]\displaystyle{ S-R }[/math] connects to a vertex in [math]\displaystyle{ S }[/math] is at most [math]\displaystyle{ k/n }[/math], and there are [math]\displaystyle{ d(k-r) }[/math] such edges. For any fixed [math]\displaystyle{ S }[/math] of size [math]\displaystyle{ k }[/math] and [math]\displaystyle{ R }[/math] of size [math]\displaystyle{ r }[/math], the probability that all neighbors of all vertices in [math]\displaystyle{ S-R }[/math] are in [math]\displaystyle{ S }[/math] is at most [math]\displaystyle{ \left(\frac{k}{n}\right)^{d(k-r)} }[/math]. Due to the union bound, for any fixed [math]\displaystyle{ S }[/math] of size [math]\displaystyle{ k }[/math],

[math]\displaystyle{ \begin{align} \Pr[\,S\mbox{ is bad}\,] &\le \sum_{r=1}^{\alpha k}{k \choose r}\left(\frac{k}{n}\right)^{d(k-r)} \le \alpha k {k \choose \alpha k}\left(\frac{k}{n}\right)^{dk(1-\alpha)} \end{align} }[/math]

Therefore,

[math]\displaystyle{ \begin{align} \Pr[\phi(G)\lt \alpha] &\le \sum_{k=1}^\frac{n}{2}\sum_{S\in{V\choose k}}\Pr[\,S\mbox{ is bad}\,]\\ &\le \sum_{k=1}^\frac{n}{2}{n\choose k}\alpha k {k \choose \alpha k}\left(\frac{k}{n}\right)^{dk(1-\alpha)} \\ &\le \sum_{k=1}^\frac{n}{2}\left(\frac{en}{k}\right)^k\alpha k \left(\frac{ek}{\alpha k}\right)^{\alpha k}\left(\frac{k}{n}\right)^{dk(1-\alpha)}&\quad (\mbox{Stirling formula }{n\choose k}\le\left(\frac{en}{k}\right)^k)\\ &\le \sum_{k=1}^\frac{n}{2}\exp(O(k))\left(\frac{k}{n}\right)^{k(d(1-\alpha)-1)}. \end{align} }[/math]

The last line is [math]\displaystyle{ o(1) }[/math] when [math]\displaystyle{ d\ge\frac{2}{1-\alpha} }[/math]. Therefore, [math]\displaystyle{ G }[/math] is an expander graph with expansion ratio [math]\displaystyle{ \alpha }[/math] with high probability for suitable choices of constant [math]\displaystyle{ d }[/math] and constant [math]\displaystyle{ \alpha }[/math].

Explicit constructions

We have shown that a random [math]\displaystyle{ d }[/math]-regular graph is an expander with high probability. This gives us a probabilistic way to construct expander graphs. For some applications, this is good enough. However, some applications of expander graphs in complexity theory ask for explicit constructions of expander graphs. In particular, we need a polynomial time deterministic algorithm which given a vertex [math]\displaystyle{ v }[/math] and a integer [math]\displaystyle{ k }[/math] as input, returns the [math]\displaystyle{ k }[/math]th neighbor of [math]\displaystyle{ v }[/math].

  • The old way: constructions based on algebraic structures, e.g. Cayley graphs which are based on groups.
  • The new way: combinatorial constructions which are based on graph operations, e.g. the zig-zag product.

This course will not cover these materials.

Computation of graph expansion

Computation of graph expansion seems hard, because the definition involves the minimum over exponentially many subsets of vertices. In fact, the problem of deciding whether a graph is an expander is co-NP-complete. For a non-expander [math]\displaystyle{ G }[/math], the vertex set [math]\displaystyle{ S\subset V }[/math] which has low expansion ratio is a proof of the fact that [math]\displaystyle{ G }[/math] is not an expander, which can be verified in poly-time. However, there is no efficient algorithm for computing the [math]\displaystyle{ \phi(G) }[/math] unless NP=P.

The expansion ratio of a graph is closely related to the sparsest cut of the graph, which is the dual problem of the multicommodity flow problem, both NP-complete. Studies of these two problems revolutionized the area of approximation algorithms.

We will see right now that although it is hard to compute the expansion ratio exactly, the expansion ratio can be approximated by some efficiently computable algebraic identity of the graph.

Graph spectrum

The adjacency matrix of an [math]\displaystyle{ n }[/math]-vertex graph [math]\displaystyle{ G }[/math], denoted [math]\displaystyle{ A = A(G) }[/math], is an [math]\displaystyle{ n\times n }[/math] matrix where [math]\displaystyle{ A(u,v) }[/math] is the number of edges in [math]\displaystyle{ G }[/math] between vertex [math]\displaystyle{ u }[/math] and vertex [math]\displaystyle{ v }[/math]. Because [math]\displaystyle{ A }[/math] is a symmetric matrix with real entries, due to the Perron-Frobenius theorem, it has real eigenvalues [math]\displaystyle{ \lambda_1\ge\lambda_2\ge\cdots\ge\lambda_n }[/math], which associate with an orthonormal system of eigenvectors [math]\displaystyle{ v_1,v_2,\ldots, v_n\, }[/math] with [math]\displaystyle{ Av_i=\lambda_i v_i\, }[/math]. We call the eigenvalues of [math]\displaystyle{ A }[/math] the spectrum of the graph [math]\displaystyle{ G }[/math].

The spectrum of a graph contains a lot of information about the graph. For example, suppose that [math]\displaystyle{ G }[/math] is [math]\displaystyle{ d }[/math]-regular:

  • [math]\displaystyle{ |\lambda_i|\le d }[/math] for all [math]\displaystyle{ 1\le i\le n }[/math].
  • [math]\displaystyle{ \lambda_1=d }[/math] and the corresponding eigenvector is [math]\displaystyle{ (\frac{1}{\sqrt{n}},\frac{1}{\sqrt{n}},\ldots,\frac{1}{\sqrt{n}}) }[/math].
  • [math]\displaystyle{ G }[/math] is connected if and only if [math]\displaystyle{ \lambda_1\gt \lambda_2 }[/math].
  • [math]\displaystyle{ G }[/math] is bipartite if and only if [math]\displaystyle{ \lambda_1=-\lambda_n }[/math].

The spectral gap

Theorem (Cheeger's inequality)
Let [math]\displaystyle{ G }[/math] be a [math]\displaystyle{ d }[/math]-regular graph with spectrum [math]\displaystyle{ \lambda_1\ge\lambda_2\ge\cdots\ge\lambda_n }[/math]. Then
[math]\displaystyle{ \frac{d-\lambda_2}{2}\le \phi(G) \le \sqrt{2d(d-\lambda_2)} }[/math]

The expander mixing lemma

Given a [math]\displaystyle{ d }[/math]-regular graph [math]\displaystyle{ G }[/math] on [math]\displaystyle{ n }[/math] vertices with the spectrum [math]\displaystyle{ d=\lambda_1\ge\lambda_2\ge\cdots\ge\lambda_n }[/math], we denote [math]\displaystyle{ \lambda_\max = \max(|\lambda_2|,|\lambda_n|)\, }[/math].

Lemma (expander mixing lemma)
Let [math]\displaystyle{ G }[/math] be a [math]\displaystyle{ d }[/math]-regular graph with [math]\displaystyle{ n }[/math] vertices and set [math]\displaystyle{ \lambda = \lambda(G) }[/math]. Then for all [math]\displaystyle{ S, T \subseteq V }[/math],
[math]\displaystyle{ \left||E(S,T)|-\frac{d|S||T|}{n}\right|\le\lambda_\max\sqrt{|S||T|} }[/math]

Random walks on expander graphs

Rapid Mixing of Random Walks

Reversibility

Conductance and the mixing time

Definition (conductance)
The conductance of a irreducible Markov chain with finite state space [math]\displaystyle{ \Omega }[/math], transition matrix [math]\displaystyle{ P }[/math], and stationary distribution [math]\displaystyle{ \pi }[/math], is defined as
[math]\displaystyle{ \Phi=\min_{\overset{S\subset\Omega}{0\lt \pi(S)\le\frac{1}{2}}} \frac{\sum_{i\in S, j\not\in S}\pi_ip_{ij}}{\pi(S)} }[/math]
where [math]\displaystyle{ \pi(S)=\sum_{i\in S}\pi_i }[/math] is the probability density of [math]\displaystyle{ S\subset \Omega }[/math] under the stationary distribution [math]\displaystyle{ \pi }[/math].


Theorem
In a reversible Markov chain, [math]\displaystyle{ 1-2\Phi\le\lambda_2\le 1-\frac{\Phi^2}{2} }[/math]