Randomized Algorithms (Spring 2010)/Markov chains and random walks: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>WikiSysop
imported>WikiSysop
Line 7: Line 7:
{|border="1"
{|border="1"
|'''Theorem (Basic limit theorem)'''
|'''Theorem (Basic limit theorem)'''
:Let <math>X_0,X_1,\ldots,</math> be an ''irreducible'', ''aperiodic'' Markov chain having a stationary distribution <math>\pi</math>. Let <math>X_0</math> have the distribution <math>\pi_0</math>, an arbitrary initial distribution. Then
:Let <math>X_0,X_1,\ldots,</math> be an ''irreducible'', ''aperiodic'' Markov chain having a '''stationary distribution''' <math>\pi</math>. Let <math>X_0</math> have the distribution <math>\pi_0</math>, an arbitrary initial distribution. Then
::<math>
::<math>
\lim_{n\rightarrow\infty}\pi_n(i)=\pi(i)
\lim_{n\rightarrow\infty}\pi_n(i)=\pi(i)

Revision as of 13:53, 22 April 2010

Markov Chains

The Markov property and transition matrices

Stationary distributions

Theorem (Basic limit theorem)
Let [math]\displaystyle{ X_0,X_1,\ldots, }[/math] be an irreducible, aperiodic Markov chain having a stationary distribution [math]\displaystyle{ \pi }[/math]. Let [math]\displaystyle{ X_0 }[/math] have the distribution [math]\displaystyle{ \pi_0 }[/math], an arbitrary initial distribution. Then
[math]\displaystyle{ \lim_{n\rightarrow\infty}\pi_n(i)=\pi(i) }[/math]
for all states [math]\displaystyle{ i }[/math].

Coupling

Random Walks on Graphs

Hitting and covering

Mixing