Randomized Algorithms (Spring 2010)/The probabilistic method: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>WikiSysop
imported>WikiSysop
Line 1: Line 1:
== The Basic Idea ==
== The Basic Idea ==


=== Counting argument ===
=== Counting or sampling ===


{|border="1"
{|border="1"
Line 15: Line 15:




{|border="1"
|'''Theorem'''
:Let <math>\mathcal{F}\subseteq{[n]\choose k}</math> and let <math>m=|\mathcal{F}|</math>.  <math>\mathcal{F}</math> has a blocking set of size <math>\left\lceil\frac{n\ln m}{k}\right\rceil</math>. That is, there exists a set <math>T\subseteq[n]</math> of size <math>\left\lceil\frac{n\ln m}{k}\right\rceil</math> such that <math>T</math> intersects all <math>S\in\mathcal{E}</math>.
|}


=== Linearity of expectation ===
=== Linearity of expectation ===

Revision as of 08:35, 16 April 2010

The Basic Idea

Counting or sampling

Theorem
If [math]\displaystyle{ {n\choose k}\cdot 2^{1-{k\choose 2}}\lt 1 }[/math] then it is possible to color the edges of [math]\displaystyle{ K_n }[/math] vertices with two colors so that there is no monochromatic [math]\displaystyle{ K_k }[/math] subgraph.


Theorem (Shannon)
There is a boolean function [math]\displaystyle{ f:\{0,1\}^n\rightarrow \{0,1\} }[/math] with circuit complexity greater than [math]\displaystyle{ \frac{2^n}{3n} }[/math].


Theorem
Let [math]\displaystyle{ \mathcal{F}\subseteq{[n]\choose k} }[/math] and let [math]\displaystyle{ m=|\mathcal{F}| }[/math]. [math]\displaystyle{ \mathcal{F} }[/math] has a blocking set of size [math]\displaystyle{ \left\lceil\frac{n\ln m}{k}\right\rceil }[/math]. That is, there exists a set [math]\displaystyle{ T\subseteq[n] }[/math] of size [math]\displaystyle{ \left\lceil\frac{n\ln m}{k}\right\rceil }[/math] such that [math]\displaystyle{ T }[/math] intersects all [math]\displaystyle{ S\in\mathcal{E} }[/math].

Linearity of expectation

Theorem
Given an undirected graph [math]\displaystyle{ G }[/math] with [math]\displaystyle{ n }[/math] vertices and [math]\displaystyle{ m }[/math] edges, there is a cut of size at least [math]\displaystyle{ \frac{m}{2} }[/math].


Theorem
For any set of [math]\displaystyle{ m }[/math] clauses, there is a truth assignment that satisfies at least [math]\displaystyle{ \frac{m}{2} }[/math] clauses.

Alterations

Tools

The Lovász Local Lemma