Randomized Algorithms (Spring 2010)/The probabilistic method: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>WikiSysop
imported>WikiSysop
Line 2: Line 2:


=== Counting or sampling ===
=== Counting or sampling ===
;Ramsey number


{|border="1"
{|border="1"
Line 8: Line 10:
|}
|}


;Circuit complexity


{|border="1"
{|border="1"
Line 14: Line 18:
|}
|}


A set <math>T\subseteq[n]</math> is a blocking set if <math>T</math> intersects all <math>S\in\mathcal{E}</math>.
 
;Blocking number
 
Let <math>S</math> be a set. Let <math>2^{S}=\{A\mid A\subseteq S\}</math> be the power set of <math>S</math>, and let <math>{S\choose k}=\{A\mid A\subseteq S\mbox{ and }|A|=k\}</math> be the '''<math>k</math>-uniform''' of <math>S</math>. 
 
We call <math>\mathcal{F}</math> a '''set family''' (or a '''set system''')  with '''ground set''' <math>S</math> if <math>\mathcal{F}\subseteq 2^{S}</math>. The members of <math>\mathcal{F}</math> are subsets of <math>S</math>.
 
Given a set family <math>\mathcal{F}</math> with ground set <math>S</math>,
a set <math>T\subseteq S</math> is a '''blocking set''' of <math>\mathcal{F}</math> if all <math>A\in\mathcal{F}</math> have <math>A\cap T\neq \emptyset</math>, i.e. <math>T</math> intersects (blocks) all member set of <math>\mathcal{F}</math>.


{|border="1"
{|border="1"
|'''Theorem'''
|'''Theorem'''
:Let <math>\mathcal{F}\subseteq{[n]\choose k}</math> and let <math>m=|\mathcal{F}|</math><math>\mathcal{F}</math> has a blocking set of size <math>\left\lceil\frac{n\ln m}{k}\right\rceil</math>.  
:Given a set family <math>\mathcal{F}\subseteq{S\choose k}</math>, where <math>m=|\mathcal{F}|</math> and <math>n=|S|</math>, <math>\mathcal{F}</math> has a blocking set of size <math>\left\lceil\frac{n\ln m}{k}\right\rceil</math>.  
|}
|}



Revision as of 09:20, 16 April 2010

The Basic Idea

Counting or sampling

Ramsey number
Theorem
If [math]\displaystyle{ {n\choose k}\cdot 2^{1-{k\choose 2}}\lt 1 }[/math] then it is possible to color the edges of [math]\displaystyle{ K_n }[/math] vertices with two colors so that there is no monochromatic [math]\displaystyle{ K_k }[/math] subgraph.


Circuit complexity
Theorem (Shannon)
There is a boolean function [math]\displaystyle{ f:\{0,1\}^n\rightarrow \{0,1\} }[/math] with circuit complexity greater than [math]\displaystyle{ \frac{2^n}{3n} }[/math].


Blocking number

Let [math]\displaystyle{ S }[/math] be a set. Let [math]\displaystyle{ 2^{S}=\{A\mid A\subseteq S\} }[/math] be the power set of [math]\displaystyle{ S }[/math], and let [math]\displaystyle{ {S\choose k}=\{A\mid A\subseteq S\mbox{ and }|A|=k\} }[/math] be the [math]\displaystyle{ k }[/math]-uniform of [math]\displaystyle{ S }[/math].

We call [math]\displaystyle{ \mathcal{F} }[/math] a set family (or a set system) with ground set [math]\displaystyle{ S }[/math] if [math]\displaystyle{ \mathcal{F}\subseteq 2^{S} }[/math]. The members of [math]\displaystyle{ \mathcal{F} }[/math] are subsets of [math]\displaystyle{ S }[/math].

Given a set family [math]\displaystyle{ \mathcal{F} }[/math] with ground set [math]\displaystyle{ S }[/math], a set [math]\displaystyle{ T\subseteq S }[/math] is a blocking set of [math]\displaystyle{ \mathcal{F} }[/math] if all [math]\displaystyle{ A\in\mathcal{F} }[/math] have [math]\displaystyle{ A\cap T\neq \emptyset }[/math], i.e. [math]\displaystyle{ T }[/math] intersects (blocks) all member set of [math]\displaystyle{ \mathcal{F} }[/math].

Theorem
Given a set family [math]\displaystyle{ \mathcal{F}\subseteq{S\choose k} }[/math], where [math]\displaystyle{ m=|\mathcal{F}| }[/math] and [math]\displaystyle{ n=|S| }[/math], [math]\displaystyle{ \mathcal{F} }[/math] has a blocking set of size [math]\displaystyle{ \left\lceil\frac{n\ln m}{k}\right\rceil }[/math].

Linearity of expectation

Theorem
Given an undirected graph [math]\displaystyle{ G }[/math] with [math]\displaystyle{ n }[/math] vertices and [math]\displaystyle{ m }[/math] edges, there is a cut of size at least [math]\displaystyle{ \frac{m}{2} }[/math].


Theorem
For any set of [math]\displaystyle{ m }[/math] clauses, there is a truth assignment that satisfies at least [math]\displaystyle{ \frac{m}{2} }[/math] clauses.

Alterations

Tools

The Lovász Local Lemma