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We study the nondeterministic cell-probe complexity of static data structures. We introduce cell-
probe proofs (CPP), a proof system for the cell-probe model, which describes verification instead
of computation in the cell-probe model. We present a combinatorial characterization of CPP. With
this novel tool, we prove the following lower bounds for the nondeterministic cell-probe complexity
of static data structures.

—There exists a data structure problem with high nondeterministic cell-probe complexity.

—For the exact nearest neighbor search (NNS) problem or the partial match problem in high di-
mensional Hamming space, for any data structure with Poly(n) cells, each of which contains
O

(
nC)

bits where C < 1, the nondeterministic cell-probe complexity is at least �
(
log(d/ log n)

)
,

where d is the dimension and n is the number of points in the data set.

—For the polynomial evaluation problem of d-degree polynomial over finite field of size 2k where
d ≤ 2k, for any data structure with s cells, each of which contains b bits, the nondeterministic
cell-probe complexity is at least min

(
k
b (d − 1), k−log(d−1)

log s

)
.
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1. INTRODUCTION

We study the problem of the nondeterministic cell-probe complexity of static
data structures.
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Given a set Y of data instances and a set X of possible queries, a data struc-
ture problem can be abstractly defined as a function f mapping each pair con-
sisting of a query x ∈ X and a data instance y ∈ Y to an answer. One of the most
well-studied examples of data structure problems is the “membership query”:
X = [m] is a data universe, Y =

([m]
n

)
, and f (x, y) = 1 if x ∈ y and f (x, y) = 0 if

otherwise.
There are some other important examples of data structure problems:

Exact nearest neighbor search (NNS) [Barkol and Rabani 2002; Borodin
et al. 1999; Indyk et al. 2004]: given a metric space U, let X = U and
Y =

(U
n

)
, and for every x ∈ X and y ∈ Y , f (x, y) is defined as the closest

point to x in y according to the metric.
Partial match [Borodin et al. 1999; Jayram et al. 2004; Pătraşcu 2008]:
X = {0, 1, ∗}d, Y =

({0,1}d

n

)
, and f (x, y) ∈ {0, 1} such that for every x ∈ X

and y ∈ Y , f (x, y) = 1 if and only if there exists z ∈ y having either xi = zi
or xi = ∗ for every i.
Polynomial evaluation [Miltersen 1995]: X = 2k is a finite field, Y = 2kd is
the set of all (d− 1)-degree polynomials over the finite field 2k, and f (x, y)
returns the value of y(x).

A classic computational model for static data structures is the cell-probe model
Yao [1981]. For each data instance y, a table of cells is constructed to store y.
This table is called a static data structure for some problem f . Upon a query x,
an all-powerful algorithm tries to compute f (x, y), based on adaptive random
access (probes) to the cells.

The cell-probe model is a clean and general model for static data structures,
and serves as a great tool for the study of lower bounds. Previous research
on static data structures in the cell-probe model has focused on the complexity
of adaptive cell-probes. In this work, we focus on the complexity of nondeter-
ministic cell-probes and the tradeoff between the number of probes needed and
space. We speculate that it is an important problem with following motivations:

(1) In considering the complexity of data structures, nondeterminism is a very
natural extension to the cell-probe model. Instead of adaptive computa-
tions, nondeterministic cell-probes capture the notion of verification, which
is a natural and important aspect of data structures.

(2) A classic tool for analyzing the cell-probe model is communication complex-
ity [Kushilevitz and Nisan 1997; Miltersen et al. 1998], for which the com-
putations in a data structure are viewed as communications between two
adaptive players. This observation makes computations in data structures
analyzable by granting the data structure extra power (i.e., an adaptive
table). By the same light, assuming nondeterminism provides us a differ-
ent way of proving lower bounds: instead of having a table that can “talk,”
it assumes a probing algorithm that can “guess”.
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Although nondeterministic cell-probe complexity is an important problem, the
optimal nondeterministic bounds for static data structure problems are still un-
known. For many naturally defined data structure problems, nondeterminism
trivializes the problem in the sense that a constant number of nondeterministic
cell-probes are sufficient to answer the queries. For the problems that remain
nontrivial after allowing nondeterminism, no lower bounds are known for the
nondeterministic cell-probe complexity.

It is thus worth asking whether there exists any data structure problem
such that in data structures with feasible sizes (polynomial in the size of data
set), the nondeterministic cell-probe complexity is relatively high. More impor-
tantly, it calls for a general technique to prove lower bounds on the nondeter-
ministic cell-probe complexity of static data structures.

1.1 Our Contribution

In this article, we initiate the study of nondeterministic cell-probe complexity
for static data structures.

We introduce cell-probe proofs, a proof system in the cell-probe model. This
notion of proof corresponds to considering verification instead of computation
in the cell-probe model. Unlike the fully adaptive computation in the tradi-
tional cell-probe model, the formulation of cell-probe proofs shows a combinato-
rial simplicity. We introduce a combinatorial structure that fully characterizes
which problems have cell-probe proofs with specified parameters.

With these novel tools, we show the following lower bounds on nondetermin-
istic cell-probe complexity.

—There exists a data structure problem with high nondeterministic cell-probe
complexity. This result can be seen as a nondeterministic parallel to the
existential lower bound for deterministic cell-probe complexity in Miltersen
[1999], which is proved by counting. As mentioned in Miltersen [2008], the
nondeterministic lower bound cannot be easily proved by the similar count-
ing argument.

—For the exact nearest neighbor search (NNS) problem or the partial match
problem in high dimensional Hamming space, for any data structure with
Poly(n) cells, each of which contains O(nC) bits where C < 1, the nonde-
terministic cell-probe complexity is at least �

(
log

(
d/ log n

))
, where d is the

dimension and n is the number of points in the data set. The highest known
deterministic cell-probe lower bound for the problems for polynomial space is
�(d/ log n) (see Barkol and Rabani [2002] and Pătraşcu [2008]). These lower
bounds are proved by communication complexity techniques.

—For the polynomial evaluation problem of d-degree polynomial over a fi-
nite field of size 2k where d is high, for any data structure with s cells,
each of which contains b bits, the nondeterministic cell-probe complex-
ity is at least min

(
k
b (d − 1), k−log(d−1)

log s

)
. This bound is nearly equal to the
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(
min

(
d + 1, k−log d

log s

))
deterministic lower bound [Miltersen 1995], in which it

is assumed that b = k.

1.2 Related Work

To the best of our knowledge, there is no general technique for proving lower
bounds for nondeterministic cell-probe complexity of static data structures. Nor
do there exist any nontrivial lower bounds for this question. Previous work on
static data structures in the cell-probe model have focused on the complexity of
adaptive cell-probes. The most important tool for proving such lower bounds is
asymmetric communication complexity as introduced by Miltersen et al. [1998].

Fredman and Saks [1989], introduce the chronogram method. This power-
ful technique is specialized for proving the query/update tradeoff for dynamic
data structures, especially for the problems that are hard only in the dynamic
case. It is worth noting that the chronogram method can prove nondetermin-
istic lower bounds for certain dynamic data structure problems. This is for-
mally addressed by Husfeldt and Rauhe in [1998], and recently by Pătraşcu
and Demaine [2006]. However, as pointed in Husfeldt and Rauhe [1998], this
is only a byproduct of the nondeterministic nature of chronogram method, and
can only yield amortized query/update tradeoffs for dynamic data structure
problems with a certain property. Due to the unique structure of the chrono-
gram method, this technique cannot be utilized to prove lower bounds for static
data structures.

2. CELL-PROBE PROOFS

A static data structure problem is represented as a boolean function f : X ×Y →
{0, 1}. For the purposes of proving lower bounds, it is sufficient to consider only
the decision problems. We refer to each y ∈ Y as data and each x ∈ X as a
query. For each pair of x and y, f (x, y) specifies the result of the query x to the
data structure that represents the data y.

In the cell-probe model (c.f., Fredman and Saks [1989]; Yao [1981]), the data
instance y is preprocessed and stored in cells, and for each query x, the value of
f (x, y) is decided by adaptive probes to the cells. Formally, a cell-probe scheme
consists of a table structure and a query algorithm. The table structure T :
Y × I → {0, 1}b specifies a table Ty : I → {0, 1}b for each data instance y, which
maps indices of cells to their contents. Given a query x, the query algorithm
makes a sequence of probes i1, i2, . . . to the cells, where ik depends on x, and
all previous cell probes

〈
i1, Ty(i1)

〉
,
〈
i2, Ty(i2)

〉
, . . . ,

〈
ik−1, Ty(ik−1)

〉
. The value of

f (x, y) is decided at last based on the collected information.
In this work, we focus on nondeterministic cell-probes. Given a query x to a

data instance y, a set of t cells i1, i2, . . . , it are probed nondeterministically, such
that the value of f (x, y) can be uniquely decided on the query input x and the
probed information.
ACM Transactions on Computation Theory, Vol. 2, No. 1, Article 1, Pub. date: November 2010.
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Formally, a nondeterministic cell-probing algorithm is a function A which
maps the query input x and the probed cells to the result value or ⊥, such that
for any query x and data y,

(1) there exists a set of t cells i1, i2, . . . , it, such that

A
(
x,

〈
i1, Ty(i1)

〉
,
〈
i2, Ty(i2)

〉
, . . . ,

〈
it, Ty(it)

〉)
= f (x, y);

(2) for any set of t cells i1, i2, . . . , it, it holds that

A
(
x,

〈
i1, Ty(i1)

〉
,
〈
i2, Ty(i2)

〉
, . . . ,

〈
it, Ty(it)

〉) �= f (x, y).

In order to formally characterize nondeterministic cell-probes for data struc-
tures, we introduce a new concept, cell-probe proofs, which formalizes the
notion of proof and verification in the cell-probe model. For a specific data
structure problem f , a cell-probe proof system (CPP) may be defined for f as
described in the following.

We can think of a cell-probe proof system as a game played between an
honest verifier and an untrusted prover. Both of them have unlimited com-
putational power. Given an instance of data, a table of cells is honestly con-
structed according to the rules known to both prover and verifier. Both the
prover and the verifier know the query, but only the prover can observe the
whole table and thus knows the data. The prover tries to convince the veri-
fier about the result of the query to the data by revealing certain cells. After
observing the revealed cells, the verifier either decides the correct answer, or
rejects the proof, but cannot be tricked by the prover into returning a wrong
answer.

Formally, a cell-probe proof system (CPP) consists of three parts:

—A table structure T : Y × I → {0, 1}b . For any data y, a table Ty : I → {0, 1}b

is a mapping from indices of cells to their contents.
—A prover P. For every x and y, Pxy ⊆ I is a set of cells. We refer to Pxy as a

proof and
{〈

i, Ty(i)
〉 | i ∈ Pxy

}
as a certificate.

—A verifier v, which maps the queries with the certificates to the answers
{0, 1,⊥}. Given an instance of data y, for any query x, both of the following
conditions hold:

(Completeness) ∃Pxy ⊆ I : v
(
x,

{〈
i, Ty(i)

〉 | i ∈ Pxy
})

= f (x, y), and
(Soundness) ∀P′ ⊆ I : v

(
x,

{〈
i, Ty(i)

〉 | i ∈ P′}) ∈ {
f (x, y),⊥}

.

An (s, b , t)-CPP is a CPP such that for every x and y: (1) the table has s cells,
that is, |I| = s; (2) each cell contains b bits; and (3) each proof consists of t cell
probes, that is, |Pxy| = t.

Example. For the membership problem [Yao 1981], where X = [m] and Y =([m]
n

)
, and f (x, y) = 1 if and only if x ∈ y, a naive construction shows there

is a 2-cell proof. With a sorted table storing y, if x ∈ y, the proof is the cell
that contains x; if x �∈ y, the proof consists of two consecutive cells which are
the predecessor and successor of x. The same CPP also works for predecessor
search [Beame and Fich 2002].
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The fact that this simple example also works for predecessor has an impor-
tant implication. Combining with the super-constant lower bound for predeces-
sor search [Pătraşcu and Thorup 2006], this gives an example where one can
separate deterministic and nondeterministic complexity.

We remark that cell-probe proofs characterize the nondeterministic probes
in the cell-probe model. Specifically, the verifier v is just a nondeterministic
cell-probing algorithm. It is natural to see that for a cell-probe scheme, for
any query, the cells probed by an adaptive algorithm contain a cell-probe proof.
This can be seen as a data structure counterpart of P ⊆ NP.

It is important to note that although a data structure problem is nothing
but a boolean function, CPP is very different from the certificate complexity
of boolean functions [Buhrman and de Wolf 2002]. In CPP, the prover and the
verifier communicate with each other via a table structure, which distinguishes
CPP from standard certificate complexity. For any data structure problem, the
table structure can always store the results for all queries, making one cell-
probe sufficient to prove the result, which is generally impossible in the model
of certificate complexity.

We should also be specific that the model of cell-probe proofs prohibits ran-
domization. The nondeterministic model for randomized data structures is a
possible future direction.

Unlike adaptive cell-probes, CPP has a static nature, which is convenient for
reductions. As stated by the following lemma, any CPP can be trivially reduced
to 1-cell proofs.

LEMMA 2.1 REDUCTION LEMMA. For any data structure problem f , if there
exists an (s, b , t)-CPP, then there exists an (st, bt, 1)-CPP.

PROOF. Just store every t-tuple of cells in the (s, b , t)-CPP as a new cell in the
(st, bt, 1)-CPP.

3. CHARACTERIZATION OF CPPS

We now introduce a combinatorial characterization of CPP. Given a set system
F ⊆ 2Y , for any y ∈ Y , we let F (y) = {F ∈ F | y ∈ F}. For convenience, for a
partition P of Y , we abuse this notation and let P(y) denote the set F ∈ P that
y ∈ F.

Definition 3.1. We say a set system F ⊆ 2Y is an s × k-partition of Y if F is
a union of s many partitions of Y , where the cardinality of each partition is at
most k.

This particular notion of partitions of Y fully captures the structure of cell-
probe proofs. The following theorem provides a full characterization of cell-
probe proofs.

THEOREM 3.2. There is an (s, b , t)-CPP for f : X × Y → {0, 1}, if and only
if there exists an s × 2b -partition F of Y, such that for every x ∈ X and every
y ∈ Y, there exist F1, . . . , Ft ∈ F (y) such that

∣∣ f (x,∩t
i=1 Fi)

∣∣ = 1.

PROOF. First, we prove the “only if” part.
ACM Transactions on Computation Theory, Vol. 2, No. 1, Article 1, Pub. date: November 2010.
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Let T : Y × [s] → {0, 1}b be the table structure in the (s, b , t)-CPP.
Define the map of the table structure as an s × 2b matrix M such that
Mij = {y ∈ Y | Ty(i) = j}, that is, Mij is the set of all such data instances y that
the content of the i-th cell of the table is j, assuming that the data instance is
y. It is easy to verify that {Mij} is an s × 2b -partition of Y .

We then show that for every x ∈ X and y ∈ Y , there must exist i1, i2, . . . , it
such that

∣∣ f
(
x,∩t

k=1 M (ik, jk)
)∣∣ = 1, where jk = Ty(ik). To the contrary, we

assume that for some x, there exists such y that for all i1, i2, . . . , it, there
always exists y′ ∈ ∩t

k=1 M
(
ik, Ty(ik)

)
such that f (x, y) �= f (x, y′). According to the

definition of M, it implies that for any i1, i2, . . . , it, there exists a y′ that shares
the same certificate

{〈
ik, Ty(ik)

〉 | k = 1, 2, . . . , t
}

with y, but f (x, y′) �= f (x, y).
Due to the completeness of CPP, the verifier maps one of the certificates{〈

ik, Ty(ik)
〉 | k = 1, 2, . . . , t

}
of y to f (x, y), but in this case the adversary can

choose y′ as the real data instance, contradicting the soundness of the CPP.
We then deal with the “if” part.
Let F be an s × 2b -partition of Y such that for every x and every y there

is an F ∈ F (y) that
∣∣ f (x, F)

∣∣ = 1. We rewrite F as an s × 2b matrix M such
that Mij is indexed as the jth partition set in the ith partition in F , that is,
{Mij}i, j = F and for any i, {Mij} j is a partition of Y .

We can define the table structure T : Y × [s] → {0, 1}b as follows: Ty(i) is
assigned with the unique j that y ∈ Mij.

The verifier is defined as follows: for any x ∈ X and any certificate
{〈ik, jk〉 | k = 1, 2, . . . , t}, if f (x, ·) is constant on ∩t

k=1M(ik, jk), then the verifier re-
turns that value, otherwise it returns “⊥”. It is easy to verify that both the com-
pleteness and soundness of CPP are satisfied.

For all CPPs, one-cell proofs are the simplest nontrivial proofs. As we ex-
plained in the last section, the case of a one-cell proof is also very important
because all CPPs can be reduced to it. We apply the above theorem to the
one-cell case in the following corollary.

COROLLARY 3.3. There is an (s, b , 1)-CPP for f : X × Y → {0, 1}, if and only
if there exists an s × 2b -partition F of Y, such that for every x ∈ X and every
y ∈ Y, there is an F ∈ F (y) that | f (x, F)| = 1.

Let Y x
0 = {y ∈ Y | f (x, y) = 0} and Y x

1 = {y ∈ Y | f (x, y) = 1}. An alternative char-
acterization is that there is a (s, b , 1)-CPP for a problem f : X × Y → {0, 1},
if and only if there exists an s × 2b -partition F of Y such that {Y x

0, Y x
1}x∈X is

contained by the union-closure of F . It can easily be noted that this character-
ization is equivalent to the one in Corollary 3.3. With this formulation, we get
some intuition about 1-cell proofs; that is, a problem f : X × Y → {0, 1} has
simple proofs, if and only if there exists some set system F ⊆ 2Y with a simple
structure such that the complexity of F matches the complexity of the problem.

4. AN EXISTENTIAL LOWER BOUND

In this section we prove an existential lower bound for cell-probe proofs by
showing that uniformly random data structure problem has no efficient CPP
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1: 8 · Y. Yin

with high probability, which means that for most data structure problems,
there does not exist efficient nondeterministic data structures. Like the ex-
istential lower bound for deterministic data structures in Miltersen [1999], our
lower bound is in the form of bit-probe complexity, that is, each cell contains
only one bit.

We first introduce some notations.

—Given a set family F , we denote that

It(F ) =

{
t⋂

i=1

Ai | A1, A2, . . . , At ∈ F
}

.

We call It(F ) the t-intersection closure of F .
—Similarly, we define the union closure of a set system F as

⋃∗ F ={⋃
A∈G A | G ⊆ F}

, which is a set of all the unions of the members of F .
—For a fixed a set Y of data instances, we define the parameter χ(s, t) as the

smallest integer that for every s × 2-partition F of Y , χ(s, t) ≥ 1
2

∣∣⋃∗ It(F )
∣∣.

The value χ(s, t) depends on s, t, and the size of Y .

The following lemma shows a relation between the the parameter χ(s, t) and
the existence of hard problems.

LEMMA 4.1. Let f : X × Y → {0, 1} be a data structure problem where X =
{0, 1}m is the set of queries and Y = {0, 1}n is the set of data instances. The
following statements hold:

(1) With probability at least 1 − (
χ(s, t)2−2n)2m

2s2n
, there does not exists an

(s, 1, t)-CPP for uniformly random f : X × Y → {0, 1}.
(2) If χ(s, t) < 22n(1−s/2m), then there exists a problem f such that there does not

exist an (s, 1, t)-CPP for f .

PROOF. We first prove 1. Then 2 follows naturally.
Let F be an s × 2-partition of Y and h : Y → {0, 1} be a uniformly random

2-coloring of Y . We evaluate the probability that for all y ∈ Y , there exists some
A ∈ It(F ) such that y ∈ A and h is constant over A. Let Q(h) be a predicate
defined on h : Y → {0, 1} such that Q(h) is true iff ∀y ∈ Y , ∃A ∈ It(F )(y), |h(A)| =
1. The probability is Prh[Q(h)].

If Q(h) holds, it must hold that there exist B0, B1 ∈ ⋃∗ It(F ) such that
{B0, B1} is a bipartition of Y . In fact, given an h : Y → {0, 1} such that ∀y ∈ Y ,
∃A y ∈ It(F )(y),

∣∣h(A y)
∣∣ = 1, we can construct such B0 and B1 as

B0 =
⋃

y:h(y)=0

A y, and B1 =
⋃

y:h(y)=1

A y.

It is easy to check that {B0, B1} ⊂ ⋃∗ It(F ) is a bipartition of Y and h(Bb ) = {b}
for b ∈ {0, 1}.
ACM Transactions on Computation Theory, Vol. 2, No. 1, Article 1, Pub. date: November 2010.
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Therefore, each h with the desirable property Q(h) corresponds to a distinct
pair of members in

⋃∗ It(F ). According to the definition of χ(s, t), the total
number of the h that Q(h) holds is upper bounded by χ(s, t). There are totally
22n

different h : Y → {0, 1}. Therefore,

Pr
h

[Q(h)] ≤ 1
2

∣∣∣∣∣
∗⋃

It(F )

∣∣∣∣∣ /22n ≤ χ(s, t)2−2n
.

Let f be a uniformly random function f : X × Y → {0, 1}, it holds that

Pr
f

[∀x ∈ X , Q( f (x, ·))] ≤
(

Pr
h

[Q(h)]
)|X |

≤ (
χ(s, t)2−2n)2m

.

There are at most 2s2n
different s × 2-partitions of Y . By union bound, for uni-

formly random f : X × Y → {0, 1}, with probability at most
(
χ(s, t)2−2n)2m

2s2n
,

there exists an s × 2-partition F of Y such that for all x ∈ X and y ∈ Y , there
exists A ∈ It(F )(y) such that

∣∣ f (x, A)
∣∣ = 1.

Due to Theorem 3.2, it holds that the probability that there exists an
(s, 1, t)-CPP for a uniformly random f : {0, 1}m × {0, 1}n → {0, 1} is at most
(χ(s, t)2−2n

)2m
2s2n

. Statement 1 is proved.
If χ(s, t) < 22n(1−s/2m), then

(
χ(s, t)2−2n)2m

2s2n
< 1. With positive probability,

a uniformly random f has no (s, 1, t)-CPP. There must exist a data structure
problem without (s, 1, t)-CPP. Statement 2 holds.

The following lemma gives an estimation of the parameter χ(s, t).

LEMMA 4.2. If (
s
t

)
2t ≤ 2n

(
1 − s

2m

)
,

then it holds that χ(s, t) < 22n(1−s/2m).

PROOF. For any s × 2-partition F of Y , It(F ) is a l × k-partition of Y ,
where l ≤ (s

t

)
and k ≤ 2t, thus

∣∣It(F )
∣∣ ≤ (s

t

)
2t. Note that the cardi-

nality of the union closure of a set system is upper bounded by the car-
dinality of its power set. Therefore, for any s × 2-partition F of Y , it
holds that 1

2

∣∣⋃∗ It(F )
∣∣ ≤ 2−1+(s

t)2t
< 22n(1−s/2m), which means that χ(s, t) <

22n(1−s/2m).

Combining the above two lemmas, we have the following theorem.

THEOREM 4.3. If
(s

t

)
2t ≤ 2n

(
1 − s

2m

)
, there exists a problem f : {0, 1}m ×

{0, 1}n → {0, 1} such that there does not exist (s, 1, t)-CPP for f .

Applying the above theorem to specific s, t, m, and n, we can see that there
exists nondeterministically hard problem for some usual settings of these
parameters.

—s = 2m − 1 and t < n
m ; so the size of the data structure is one bit less than the

naı̈ve solution of storing answers to all queries, and the size of the proof is
less than 1

m of the size of a raw data instance.
ACM Transactions on Computation Theory, Vol. 2, No. 1, Article 1, Pub. date: November 2010.
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—The typical case for practically efficient data structures: m = ω(log n) ∩ o(n),
s = Poly(n), and t = o

(
n

log n

)
.

5. NEAREST NEIGHBOR SEARCH

We consider the decision version of nearest neighbor search, λ-near neighbor (λ-
NN), in a high dimensional Hamming cube {0, 1}d. Here, X = {0, 1}d, Y =

({0,1}d

n

)
,

and f (x, y) ∈ {0, 1} answer whether there exists a point in y within distance λ
from the x. As in Borodin et al. [1999] and Barkol and Rabani [2002], we
assume that d = ω(log n) ∩ no(1) to make the problem nontrivial.

We prove that with the above setting, there does not exist a (s, b , t)-CPP
for the λ-NN problem, if s = Poly(n), b < n1−α for some positive constant
α and t = o

(
log

(
d/ log n

))
. To prove this, we prove that the lower bound

holds for the partial match problem [Indyk et al. 2004; Jayram et al. 2004;
Pătraşcu 2008], which is an instantiation of the λ-NN problem as shown in
Borodin et al. [1999].

The partial match problem is defined as follows: The domain is a Hamming
cube {0, 1}d, where d = ω(log n) ∩ no(1), and each data instance y is a set of n
points from the domain, that is, Y =

({0,1}d

n

)
. The set of queries is X = {0, 1, ∗}d.

Given a data instance y ∈ ({0,1}d

n

)
and a query x ∈ {0, 1, ∗}d, f (x, y) = 1 if and

only if there is a z ∈ y such that z matches x, except for the bits assigned
with “∗”.

THEOREM 5.1. There is no (s, b , 1)-CPP for the partial match problem if s <
(d/2 log n)α log n and b < n1−α for some constant 0 < α < 1.

PROOF. We denote the problem as f . From the characterization of (s, b , 1)-
CPP given in Theorem 3.3, it is sufficient to show that for any s × 2b partition
F of Y , there exist x ∈ X and y ∈ Y such that for all F ∈ F (y),

∣∣ f (x, F)
∣∣ = 2. We

prove this with the probabilistic method. With some distribution of x and y, we
show that for any s × 2b partition F of Y , Pr[∀F ∈ F (y),

∣∣ f (x, F)
∣∣ = 2] > 0.

For the rest of the proof, we assume that y is uniformly selected from Y
and that x is generated by uniformly choosing r = 1 + log n bits and fixing each
of them uniformly and independently at random with 0 or 1, and setting the
other bits to “∗”.

We then prove two supporting lemmas. Recall that for a partition P of Y ,
P(y) denotes the set F ∈ P that y ∈ F.

LEMMA 5.2. For any partition P of Y, if |P | ≤ 2b , then for k < log n it
holds that

Pr
y

[∣∣P(y)
∣∣ ≤

((
1 − 2−k

)
2d

n

)]
≤ exp

(
b ln 2 − n2−k) .

PROOF. We let P = {F1, F2, . . . , Fk}, where k ≤ 2b , and let pi = |Fi|/|Y |. Be-
cause P is a partition of Y , we know that

∑
i pi = 1. We define a random variable
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Z = |P(y)|/|Y |. Since y is picked uniformly at random from Y , it holds that Z =
pi with probability pi. Since there are at most 2b differentP(y), by union bound,

Pr
y

[∣∣P(y)
∣∣ ≤

((
1 − 2−k

)
2d

n

)]
≤ 2b · Pr

[
Z = pi where pi ≤

((1−2−k)2d

n

)
(2d

n

)
]

≤ 2b
((1−2−k )2d

n

)
(2d

n

)
≤ 2b

((
1 − 2−k

)
2d

)n

2dn

≤ exp
(
b ln 2 − n2−k) .

For simplicity, we generalize the notation of f to an arbitrary point set
A ⊆ {0, 1}d, where f (x, A) is conventionally defined to indicate whether there
is a z ∈ A that matches x

LEMMA 5.3. For any A ⊆ {0, 1}d, if |A| >
(
1 − 2−k

)
2d for some k < log n,

then

Pr
x

[ f (x, A) = 0] ≤
( r

d

)k
.

PROOF. We let B = {0, 1}d \ A be the complement of A in the d-dimensional
cube. Note that |B| < 2d−k. According to our definition of the distribution of x,
x is in fact a random (d−r)-dimensional subcube in {0, 1}d, and f (x, A) = 0 only
if the cube specified by x is contained in B. This chance is maximized when B
itself is a cube. Thus, without loss of generality, we can assume that B is the
set of z ∈ {0, 1}d whose first k bits are all ones. Therefore,

Pr
x

[ f (x, A) = 0] ≤ Pr
x

[x’s first k bits are all ones] ≤
(d−k

r−k

)
(d

r

) ≤
( r

d

)k
.

We then prove that for all s × 2b partitions F of Y , the probability
Pr[∃F ∈ F (y), f (x, F) = {1}] and Pr[∃F ∈ F (y), f (x, F) = {0}] are both small.

For any F ∈ F (y), we have y ∈ F, thus ∃F ∈ F (y), f (x, F) = {1} implies that
f (x, y) = 1, therefore for an arbitrary s × 2b partition F of Y ,

Pr
x,y

[∃F ∈ F (y), f (x, F) = {1}] ≤ Pr
x,y

[
f (x, y) = 1

]
≤ Pr

x,y

[∃z ∈ y, x matches z
]

≤ n · 2−r

=
1
2

.

To bound the probability Pr
[∃F ∈ F (y), f (x, F) = {0}], we observe that each

s × 2b partition F is just a union of s many partitions of Y , each of which is
with cardinality at most 2b , therefore, by union bounds, it holds that

Pr
x,y

[∃F ∈ F (y), f (x, F) = {0}] ≤ s · Pr
x,y

[
f
(
x,P(y)

)
= {0}] (1)
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for some partition P of Y where |P | ≤ 2b . It is then sufficient to show that for
an arbitrary such partition P , the probability Pr[ f (x,P(y)) = {0}] is small.

We choose a threshold k = α log n, and separate the case that∣∣P(y)
∣∣ ≤ ((1−2−k)2d

n

)
and the case that |P(y)| >

((1−2−k )2d

n

)
. According to

Lemma 5.2, for any partition P of Y with |P | ≤ 2b , the probability that∣∣P(y)
∣∣ ≤ ((1−2−k)2d

n

)
is at most exp

(
b ln 2 − n(1−α)

)
.

We let A =
⋃P(y) =

⋃
y′∈P(y) y′. Note that A ⊆ {0, 1}d and f

(
x,P(y)

)
= {0}

imply that f (x, A) = 0. For such P(y) that
∣∣P(y)

∣∣ >
((1−2−k)2d

n

)
, it holds by

the Pigeonhole Principle that |A| ≥ (
1 − 2−k

)
2d. Then due to Lemma 5.3,

that f (x, A) = 0 holds with probability at most ( r
d)α log n. Putting the above

arguments together, it holds for any partition P of Y with |P | ≤ 2b that

Pr
x,y

[
f
(
x,P(y)

)
= {0}] ≤ Pr

y

[∣∣P(y)
∣∣ ≤

((
1 − 2−k

)
2d

n

)]

+ Pr
x,y

[
f
(
x,P(y)

)
= {0}

∣∣∣∣ ∣∣P(y)
∣∣ >

(
(1 − 2−k)2d

n

)]

≤ exp
(
b ln 2 − n(1−α)

)
+ Pr

x

[
f
(
x,

⋃
P(y)

)
= 0

∣∣∣ ∣∣∣⋃P(y)
∣∣∣ >

(
1 − 2−k) 2d

]
≤ exp

(
b ln 2 − n(1−α)

)
+

( r
d

)α log n
.

Combining with (1), we have that

Pr
x,y

[∃F ∈ F (y), f (x, F) = {0}] ≤ s ·
(

exp
(
b ln 2 − n(1−α)

)
+

(
1 + log n

d

)α log n
)

.

For such s and b that s < (d/2 log n)α log n and b < n1−α, the above probability is
o(1). Therefore,

Pr
x,y

[∀F ∈ F (y),
∣∣ f (x, F)

∣∣ = 2
] ≥ 1 − Pr

x,y

[∃F ∈ F (y), f (x, F) = {1}]
− Pr

x,y

[∃F ∈ F (y), f (x, F) = {0}]
>

1
2

− o(1) .

It follows that for any s × 2b partition F of Y with the above setting of s and b ,
there exist x ∈ X and y ∈ Y such that for every F ∈ F (y), it holds that | f (x, F)| =
2. By Corollary 3.3, there is no (s, b , 1)-CPP for f with such range of s and b .

In Borodin et al. [1999], it is shown that the partial match problem can be
reduced to the λ-NN problem. Because the reduction only involves mapping be-
tween instances of problems, the existence of an (s, b , 1)-CPP for λ-NN implies
the existence of a CPP for partial match with essentially the same parameters.
Therefore, the same lower bound holds for λ-NN.
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COROLLARY 5.4. There does not exist a (s, b , 1)-CPP for the nearest neigh-
bor search problem with n points in d-dimensional Hamming space where
d = ω(log n)∩no(1) if s < (d/2 log n)α log n and b < n1−α for some constant 0 < α < 1.

Due to Lemma 2.1, the following lower bound on the nondeterministic cell-
probe complexity holds.

COROLLARY 5.5. There does not exist a (s, b , t)-CPP for the nearest neighbor
search problem or the partial match problem with n points in d-dimensional
Hamming space where d = ω(log n) ∩ no(1) if s = Poly(n), b < n1−α for some
constant α > 0 and t = o

(
log(d/ log n)

)
.

6. POLYNOMIAL EVALUATION

Let 2k be a finite field. Let Y = 2kd be the set of all polynomials of degree
≤ (d − 1) over the finite field 2k. Throughout this section, we assume that
d ≤ 2k.

Let X = 22k be the set of all pairs of elements of the finite field 2k. A decision
version of the polynomial evaluation problem f is defined as follows: for every
query (x, z) ∈ X and every data instance g ∈ Y , f

(
(x, z), g

)
= 1 if g(x) = z and

f
(
(x, z), g

)
= 0 otherwise. A polynomial g is preprocessed and stored as a data

structure, so that for each query (x, z), the data structure answers whether
g(x) = z.

There are two naı̈ve upper bounds for one-cell proofs:

(1) a (1, kd, 1)-CPP: store the whole polynomial in a single cell, and on each
query, one probe reveals the whole polynomial;

(2) a
(
2k, k, 1

)
-CPP: each cell corresponds to an input x, and the cell stores the

value of g(x), thus on each query (x, z), one probe to the cell corresponding
to x answers whether g(x) = z.

We are going to prove that the above naive upper bounds are essentially opti-
mal for single-probe proofs. We show that for any (s, b , 1)-CPP, either b is close
to large enough to store a whole polynomial as in case (1), or the total storage
size s · b is exactly as large as in case (2).

We first prove two lemmas. For any subset P ⊆ Y , let τ (P) =∣∣{x ∈ 2k | ∀g1, g2 ∈ P, g1(x) = g2(x)
}∣∣, which represents the number of such as-

signments of x that all polynomials in P yield the same outcome. It is trivial to
see that for |P| ≤ 1, τ (P) = 2k.

LEMMA 6.1. If |P| > 1, it holds that

τ (P) ≤ d − log |P|
k

.

PROOF. We write τ (P) briefly as τ . Let x1, x2, . . . , xτ be such that all polyno-
mials in P yield the same outcomes. We arbitrarily pick other xτ+1, xτ+2, . . . , xd.
For any two different polynomials g1, g2 ∈ P, it can never hold that g1(xi) =
g2(xi) for all i = τ + 1, τ + 2, . . . , d, since, if otherwise, g1 ≡ g2 by interpolation.
Recall that g is a polynomial over the finite field 2k, thus for an arbitrary g ∈ P
and an arbitrary x, there are at most 2k possible values for g(x). Therefore, due
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to the Pigeonhole Principle, in order to guarantee that no two polynomials in
P agree on all xτ+1, xτ+2, . . . , xd, it must hold that 2k(d−τ ) ≥ |P|, that is, τ (P) ≤
d− log |P|

k .

LEMMA 6.2. Given a partition P of Y, let g be a uniformly random polyno-
mial in Y. E{τ (P(g))} represents the expected number of the input xs such that
all polynomials in the partition block P(g) yield the same outcome, where the
expectation is taken over random g. For any partition P of Y such that |P | ≤ 2b

and b ≤ k(d − 1), it holds that

E
{
τ
(P(g)

)} ≤ b
k

.

PROOF. Let P1, P2, . . . , P2b denote the partition blocks and let q1, q2, . . . , q2b

be the respective cardinalities. Naturally, we have that
∑2b

i=1 qi = 2kd. We as-
sume that qi = 0 for i = 1, 2, . . . , m0, qi = 1 for i = m0 +1, m0 +2, . . . , m, and qi > 1
for i > m. For those Pi that i ≤ m, |Pi| = qi ≤ 1, thus τ (Pi) = 2k. According to
Lemma 6.1,

E
{
τ
(P(g)

)}
=

m0∑
i=1

0
2kd τ (Pi) +

m∑
i=m0+1

1
2kd τ (Pi) +

2b∑
i=m+1

qi

2kd τ (Pi)

≤ (m − m0) · 2k

2kd +
2b∑

i=m+1

qi

2kd

(
d − log qi

k

)
. (2)

Recall that
∑2b

i=m+1 qi = 2kd − ∑m
i=1 qi = 2kd − m + m0. According to Lagrange

multipliers, (2) is maximized when all qi for i = m + 1, m + 2, . . . , 2b are equal.
Thus (2) is less than or equal to

m − m0

2k(d−1)
+

2kd − m + m0

2kd

(
d − log

(
2kd − m + m0

) − log
(
2b − m

)
k

)
.

Let ε = m−m0
2b . The above formula becomes

2b−k(d−1)ε

+
(
1 − 2b−kdε

)(
d − log 2kd

(
1 − 2b−kdε

) − log 2b
(
1 − 2−b

(
2bε + m0

))
k

)

≤ 2b−k(d−1)ε +
1
k

(
1 − 2b−kdε

) (
b + log(1 − ε) − log

(
1 − 2b−kdε

))
≤

(
2b−k(d−1) − b + 1 − 2b−kd

k

)
ε − 1

k

∞∑
n=2

(
1 − 2b−kd

n − 1

)
εn.

Note that ε ∈ [0, 1). If b ≤ k(d − 1), the above function of ε is monotonically
decreasing over [0, 1), and thus its value is maximized when ε = 0, that is,
E{τ (P(g))} ≤ b

k .

With the above lemmas, we can prove the following theorem.
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THEOREM 6.3. For any (s, b , 1)-CPP for the polynomial evaluation problem
with parameters k and d where d ≤ 2k, either b > k(d − 1) or s · b ≥ k · 2k.

PROOF. We will prove that there does not exist an (s, b , 1)-CPP for the poly-
nomial evaluation problem if b ≤ k(d − 1) and s · b < k · 2k.

Let x be a uniformly random element of 2k and let g be a uniformly ran-
dom polynomial from Y . For any partition P of Y that |P | ≤ 2b , according to
Lemma 6.2,

Pr
x,g

[∀g1, g2 ∈ P(g), g1(x) = g2(x)
]

=
1
2k E

{
τ
(P(g)

)} ≤ b
k2k .

Therefore, for any s × 2b partition F of Y , it holds that

Pr
x,g

[∃F ∈ F (g),∀g1, g2 ∈ F, g1(x) = g2(x)
]

≤ s · Pr
x,g

[∀g1, g2 ∈ P(g), g1(x) = g2(x)
]

≤ s · b
k2k

< 1 ,

where the first inequality is due to the observation that F is a union of s in-
stances of 2b -partitions of Y . Therefore, for any s × 2b partition F of Y ,

Pr
x,g

[∀F ∈ F (g)∃g1, g2 ∈ F, g1(x) �= g2(x)
]
> 0 .

By probabilistic methods, we know that for any s × 2b partition F of Y , there
exists some (x, z) ∈ X and some g ∈ Y such that g(x) = z, but for all F ∈ F (g),
there exists h ∈ F such that h(x) �= z.

According to Theorem 3.3, we know that there does not exist (s, b , 1)-CPP
with the given range of s and b .

Due to Lemma 2.1, the following general lower bound holds.

COROLLARY 6.4. If t < min
(

k
b (d − 1), k−log(d−1)

log s

)
, there does not exist (s, b , t)-

CPP for the polynomial evaluation problem with parameters k and d.

PROOF. If t < min
(

k
b (d − 1), k−log(d−1)

log s

)
, then it holds that st < 2k/(d − 1)

and bt ≤ k(d − 1), thus st · bt < k · 2k and bt ≤ k(d − 1). According to
Theorem 6.3, there does not exists (st, bt, 1)-CPP for the polynomial evalua-
tion problem with parameters k and d. And due to Lemma 2.1, there does
not exist (s, b , t)-CPP for the polynomial evaluation problem with parameters
k and d.

Applying this corollary to the interesting case of d = kω(1) ∩ o(2k), that is,
the degree of the polynomial is high, but not too high to trivialize the prob-
lem. For the feasible setting of a data structure that s = Poly(kd) and
b = Poly(k), there exists a (s, b , t)-CPP for polynomial evaluation only if
t = �

(
k

log kd

)
.
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7. CONCLUSIONS

The results in this article contribute a general way of proving lower bounds
for nondeterministic data structures: thus reducing the nondeterministic cell-
probe complexity of data structure problems to the existence of the set systems
with certain combinatorial structures, and proving the existence of this struc-
ture via probabilistic methods (or by any methods for proving the existence of
combinatorial structures). Possible future work may be to apply this technique
on other hard problems to discover new lower bounds.

There is also another interesting future direction, which is fundamental to
the technique of proving lower bounds with cell-probe proofs. In the current
work, the lower bounds for specific problems are proved by reducing general
cell-probe proofs with parameter (s, b , t) to single-cell proofs

(
st, bt, 1

)
. Although

it makes the analysis easier, the reduction actually amplifies the power of
CPPs. Any analysis based on the parameter reduction in the above form cannot
derive any lower bound better than t > log |X |

log s , which is the same barrier shared
by the communication complexity model [Miltersen et al. 1998]. The existen-
tial lower bound proved in Section 4 shows that CPPs can support static lower
bounds that beat communication complexity. In order to prove higher lower
bound for CPPs than the communication model or to explore the intractability
of nondeterministic data structures (e.g., to verify whether the conjecture of
“the curse of dimensionality” holds nondeterministically), we have to directly
analyze the CPPs with general parameters.
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