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Abstract. We design deterministic fully polynomial-time approxima-
tion scheme (FPTAS) for computing the partition function for a class
of multi-spin systems, extending the known approximable regime by an
exponential scale. As a consequence, we have an FPTAS for the Potts
models with inverse temperature β up to a critical threshold |β| = O( 1

∆
)

where ∆ is the maximum degree, confirming a conjecture in [10]. We also
give an improved FPTAS for a generalization of counting q-colorings,
namely the counting list-colorings. As a consequence we have an FP-
TAS for counting q-colorings in graphs with maximum degree ∆ when
q ≥ α∆ + 1 for α greater than α∗ ≈ 2.58071. This is so far the best
bound achieved by deterministic approximation algorithms for counting
q-colorings. All these improvements are obtained by applying a poten-
tial analysis to the correlation decay on computation trees for multi-spin
systems.

1 Introduction

Spin systems in Statistical Physics are the stochastic models defined by local
interactions. In Computer Science, spin systems are used as a theoretical frame-
work for counting or inference problems arising from constraint satisfaction prob-
lems, e.g. counting independent sets or q-colorings in graphs, and probability
inference in graphical models.

A central problem in this framework is the computation of the partition
function, which may solve both counting and inference. The problem is #P-hard
for almost all nontrivial spin systems [3,4]. A classic approach for approximation
of partition function is the Markov Chain Monte Carlo (MCMC) method which
relies on the rapid mixing of random walks in the configuration space [5–7, 13–
18, 21, 27]. A more contemporary approach is the correlation decay technique
introduced by Bandyopadhyay and Gamarnik [1] and Weitz [28], which leads
to deterministic fully polynomial-time approximation scheme (FPTAS) for #P-
hard counting problems [2, 10,19,20,22,23,29].

In these algorithms, the computation of a marginal probability (which is
equivalent to the computation of partition function by self-reduction) is reduced
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to evaluating an exponential-size tree-structured dynamical system. The corre-
lation decay property guarantees that the far-away variables can be disregarded
without substantially affecting the marginal probability of interest, thus the true
values can be efficiently approximated by evaluating truncated dynamical sys-
tems. Two such dynamical systems were proposed: (1) the self-avoiding-walk
(SAW) tree [28] for two-state spin systems and (2) the computation tree [10] for
all spin systems. For two-state spin systems, FPTAS based on SAW-trees may
approach the approximability boundaries, such as [19,20,23,28]. This is because
a SAW-tree is a faithful construction of the original spin system on a tree, hence
long-range correlations can be used as gadgets in the reduction for the inap-
proximability [8, 25, 26]. Very recently, the similar long-range correlations were
used to prove inapproximability for multi-spin systems [9]. On the algorithmic
side, due to a barrier result of Sly in [24], the original spin systems on trees are
no longer capable of simulating all marginal probabilities. The computation tree
introduced by Gamarnik and Katz in [10] overcomes this fundamental issue by
creating a dynamical system consisting of different instances of spin systems.

1.1 Our results

We design efficient computation trees for multi-spin systems: For a vertex of de-
gree d, our computation tree expends to d branches while the previous one in [10]
has exp(Ω(d)) many branches. We apply a potential analysis to the decay of cor-
relation between variables in computation trees. The potential analysis has been
used in [19,20,22,23] for analyzing the correlation decay on the self-avoiding walk
trees for two-state spin systems. We show for the first time that this powerful
technique can be applied to computation trees for multi-spin systems. Our new
construction of efficient computation trees and potential analysis greatly extend
the regimes of correlation decay and deterministic FPTAS for these systems.

One of the most well-studied multi-spin systems is the Potts model.

Theorem 1. For any constant q ≥ 2, there exists an FPTAS for computing
the partition function for q-state Potts models with inverse temperature β and
maximum degree ∆ satisfying 3∆(e|β| − 1) ≤ 1.

For large ∆, the condition 3∆(e|β| − 1) ≤ 1 is translated to that |β| = O( 1
∆ ),

which greatly improves the best previous bound β = O
(

1
∆q∆

)
due to Gamarnik

and Katz [10] and also confirms a conjecture in [10]. For the anti-ferromagnetic
case (β < 0), our condition is asymptotically tight due to a very recent inap-
proximability result of Galanis, Štefankovič, and Vigoda [9].

Theorem 1 is a special case of a much more general theorem for the q-state
spin systems, also called the Markov random fields. As suggested by [10], the
regime of correlation decay for these models is described in terms of cA, the
maximum ratio between edge parameters. We show that there exists an FPTAS
for a family of Markov random fields if 3∆(cA − 1) ≤ 1. This exponentially
improves the previous best known condition (c∆A− c

−∆
A )∆q∆ < 1 proved in [10].

This general result is formally stated as Theorem 3 in Section 2.



We next study the problem of counting proper q-colorings in an undirected
graph. For this problem, the mixing or the tractability condition is usually given
in form of q ≥ α∆ + β for some constant α and β where ∆ is the maximum
degree of the graph. The previous best bound for deterministic FPTAS was
achieved in [10] for an α ≈ 2.8432 and some sufficiently large β on triangle-free
graphs. Better bounds (with α < 2) were known for randomized approximation
algorithms [6, 15, 27] or correlation decay only [11, 12]. We prove the following
theorem for a constant α∗ ≈ 2.58071 which is formally defined by (2) in Section 2.

Theorem 2. There exists an FPTAS for counting q-colorings on graphs with
maximum degree ∆ if q and ∆ are constants and q ≥ α∆+ 1 for α > α∗.

This is a new record for the deterministic FPTAS for counting q-colorings on gen-
eral graphs, and we remove the triangle-free requirement in previous correlation-
decay based results such as [10, 12]. Theorem 2 is proved as a special case of a
theorem for a generalization of q-colorings, called the list-colorings, which is
formally stated as Theorem 4 in Section 2.

All the above FPTAS require the degree of the graph and the number of states
(colors) to be constant. If we remove this restriction, the algorithms compute
a (1 ± ε)-approximation of the true value for any fixed 0 < ε < 1 in time
nO(logn). This complexity bound was only known previously for simple models
like list-colorings but was not known for general multi-spin systems since for such
systems the previous computation tree proposed in [10] tries to enumerate all
configurations of the local neighborhood at each step. We give a more efficient
computation tree which uses exponentially less branches.

2 Definitions and Statements of Results

An instance of a q-state spin system or a pair-wise Markov random field (MRF)
is a tuple Ω = (G,X ,A,F ), where

– G = (V,E) is an undirected graph called the underlying graph;
– X = [q] = {1, 2, . . . , q} is a domain of spin states;
– A = (Ae, e ∈ E) is a tuple where each Ae : X × X → R≥0 is a symmetric

function specifying the activity of edge e;
– F = (Fv, v ∈ V ) is a tuple where each Fv : X → R≥0 specifies the external

field at vertex v.

The size of an MRF instance is defined as |Ω| = max{|V |, |X |}. We consider
only those MRF instances such that the number of bits used to encode A and
F is in polynomial of n = |V | and q = |X |. This does not affect the generality
of the problem since we are interested in the approximation algorithms.

The partition function of an MRF instance Ω = (G,X ,A,F ) is defined as

Z(Ω) ,
∑

x∈XV

∏
e=uv∈E

Ae(xu, xv)
∏
v∈V

Fv(xv).



This gives rise to a probability distribution PΩ , called the Gibbs measure, over
all configurations x ∈ X V , such that

PΩ(X = x) =

∏
e=uv∈E Ae(xu, xv)

∏
v∈V Fv(xv)

Z(Ω)
.

Given an MRF instance Ω = (G,X ,A,F ) with underlying graph G = (V,E),
we denote by ∆G the maximum degree of G and let

cA , max
e∈E

w,x,y,z∈X

Ae(x, y)

Ae(w, z)
.

Theorem 3. Let M be a family of MRF instances with bounded degree and
bounded size of domain. There exists an FPTAS for computing the partition
function of MRFs in M if it holds that

∀Ω = (G,X ,A,F ) ∈M, 3∆G(cA − 1) ≤ 1. (1)

For any family M of MRFs satisfying (1) without any restriction on the degree
or the size of domain, the algorithm computes a (1± ε)-approximation of Z(Ω)
for any fixed 0 < ε < 1 in time nO(logn) where n = |Ω|.

The q-state Potts model is a special class of MRFs Ω = (G,X ,A,F ) with
for every e ∈ E, Ae = A such that A(x, y) = eβ if x = y and A(x, y) = 1
otherwise. The parameter β is called the inverse temperature. It is easy to see
that Theorem 1 is a special case of Theorem 3 on Potts models.

Next we consider the proper q-colorings in an undirected graph, which can
be easily seen as a special case of MRF. The problem of counting q-colorings
is solved by solving its generalization called the list-colorings. A list-coloring
instance is a tuple Ω = (G,X ,L) with that

– G = (V,E) is an undirected graph;
– X = [q] is a domain of q colors;
– L = (Lv, v ∈ V ) such that each Lv ⊆ X is a list of colors for vertex v.

A proper coloring in a list-coloring instance is a proper q-coloring x ∈ X V of
vertices such that xv ∈ Lv for every v ∈ V . The list-coloring is a special case of
MRFs (G,X ,A,F ) with that for every e ∈ E, Ae = A such that A(x, y) = 0
if x = y and A(x, y) = 1 if otherwise, and for every v ∈ V , the external field
Fv is a Boolean function indicating the color list Lv. For the list-colorings we
have cA =∞, thus Theorem 3 does not apply, so we use different algorithm and
analysis to prove the following theorem. Let α∗ ≈ 2.58071 be the solution to the
equation3

√
2 +

√
2α− 1−

√
4α− 3√

2α(α− 1)
exp

(
3− 2α+

√
4α− 3

4(α− 1)

)
= 1. (2)

3 The LHS of (2) is in fact monotonously decreasing from +∞ to 0 for α > 1, so there
is a unique solution α∗.



Theorem 4. There exists a deterministic FPTAS for counting proper colorings
in list-coloring instances Ω = (G,X ,L) with bounded degree ∆G and bounded
number of colors q = |X | satisfying that there is an α > α∗ such that

∀v ∈ V, |Lv| ≥ α∆G + 1. (3)

Obviously Theorem 2 is a special case of Theorem 4 as colorings are just list-
clorings with Lv = X for every v ∈ V .

3 Markov Random Fields

Given an MRF instance defined on the underlying graph G = (V,E), we suppose
that for each vertex v ∈ V , the neighbors of v are enumerated as v1, v2, . . . , vdeg(v)
where deg(v) is the degree of v. We define operations called pinning and partial
pinning on MRF instances as follows.

Definition 1. Given an MRF instance Ω = (G,X ,A,F ), a vertex v ∈ V and
its neighbors v1, v2, . . . , vd in G, where d = deg(v), for each spin state x ∈ X
and each 1 ≤ i ≤ d + 1, the partial pinning of Ω, denoted as Ωiv,x, is a new

MRF instance augmented from Ω as Ωiv,x = (Gv,X , Ã, F̃ ), where Gv = G \ {v}
is the subgraph of G induced by V \ {v}, Ã = (Ae, e ∈ E \ {vv1, vv2, . . . , vvd}) is

the restriction of A on the set of edges in Gv, and F̃ = (F̃u, u ∈ V \ {v}) where

∀y ∈ X , F̃u(y) =

{
Auv(x, y)Fu(y) if u ∈ {v1, . . . , vi−1},
Fu(y) otherwise.

The pinning of Ω is a partial pinning by choosing i = d+ 1, which is denoted as
Ωv,x = Pinv,x(Ω) = Ωd+1

v,x .

The following identity can be seen as a generalization of the recursion for
list-colorings derived in [10]. Compared to the recursion for MRFs in [10], it
uses substantially less variables.

Proposition 1. Let Ω = (G,X ,A,F ) be an MRF instance. For every vertex
v ∈ VG and its neighbors v1, v2, . . . , vd where d = deg(v), and every spin state
x ∈ X , it holds that

PΩ(Xv = x) =
Fv(x)

∏d
i=1

(
Avvi (x,x)−

∑
z 6=x(Avvi (x,x)−Avvi (x,z))PΩiv,x (Xvi=z)

)
∑
y∈X Fv(y)

∏d
i=1

(
Avvi (y,y)−

∑
z 6=y(Avvi (y,y)−Avvi (y,z))PΩiv,y (Xvi=z)

) .

Proof. We define that

ZΩ(Xv = x) ,
∑

x∈XV
xv=x

∏
uw∈E

Auw(xu, xw)
∏
u∈V

Fu(xu).



It can be verified that ZΩ(Xv = x) = Fv(x)Z(Ωv,x) where Ωv,x = Pinv,x(Ω) is
the pinning of Ω. Then

PΩ(Xv = x) =
ZΩ(Xv = x)∑
y∈X ZΩ(Xv = y)

=
Fv(x)Z(Ωv,x)∑
y∈X Fv(y)Z(Ωv,y)

. (4)

By the Definition 1, it holds that Ωv,x = Ωd+1
v,x , and Ω1

v,x is simply the MRF
instance deleting vertex v, which is independent of the choice of x. Therefore,

(4) =
Fv(x)Z(Ωd+1

v,x )/Z(Ω1
v,x)∑

y∈X Fv(y)Z(Ωd+1
v,y )/Z(Ω1

v,y)
=

Fv(x)
∏d
i=1

Z(Ωi+1
v,x )

Z(Ωiv,x)∑
y∈X Fv(y)

∏d
i=1

Z(Ωi+1
v,y )

Z(Ωiv,y)

. (5)

The partition function of a partial pinning of Ω expands as:

Z(Ωiv,x) =
∑

x∈XV \{v}

∏
uw∈E
u6=v
w 6=v

Auw(xu, xw)
∏

u∈V \{v}

Fu(xu)

i−1∏
j=1

Avvj (x, xvj ).

It can be verified that Z(Ωi+1
v,x ) =

∑
z∈X Avvi(x, z) · ZΩiv,x(Xvi = z). Therefore,

(5) =
Fv(x)

∏d
i=1

∑
z∈X Avvi(x, z) ·

ZΩiv,x
(Xvi=z)

Z(Ωiv,x)∑
y∈X Fv(y)

∏d
i=1

∑
z∈X Avvi(y, z) ·

ZΩiv,y
(Xvi=z)

Z(Ωiv,y)

=
Fv(x)

∏d
i=1

∑
z∈X Avvi(x, z) · PΩiv,x(Xvi = z)∑

y∈X Fv(y)
∏d
i=1

∑
z∈X Avvi(y, z) · PΩiv,y (Xvi = z)

=
Fv(x)

∏d
i=1

(
Avvi (x,x)−

∑
z 6=x(Avvi (x,x)−Avvi (x,z))PΩiv,x (Xvi=z)

)
∑
y∈X Fv(y)

∏d
i=1

(
Avvi (y,y)−

∑
z 6=y(Avvi (y,y)−Avvi (y,z))PΩiv,y (Xvi=z)

) ,

where the last equation uses the fact that
∑
z∈X PΩiv,y (Xvi = z) = 1.

3.1 Algorithms based on the computation tree recursion

Given an MRF instance Ω = (G,X ,A,F ) on underlying graph G = (V,E), a
vertex v ∈ V with d neighbors v1, v2, . . . , vd in G and a spin state x ∈ X , we
define the following function:

fΩ,v,x(p) ,
Fv(x)

∏d
i=1(Avvi (x,x)−

∑
z 6=x(Avvi (x,x)−Avvi (x,z))pi,x,z)∑

y∈X Fv(y)
∏d
i=1(Avvi (y,y)−

∑
z 6=y(Avvi (y,y)−Avvi (y,z))pi,y,z)

(6)

over the domain of vectors p = (pi,y,z, 1 ≤ i ≤ d; y, z ∈ X ; y 6= z) ∈ [0, 1]dq(q−1)

satisfying that
∑
z 6=y pi,y,z ≤ 1 for every 1 ≤ i ≤ d and y ∈ X . Due to Proposi-

tion 1 we have PΩ(Xv = x) = fΩ,v,x(p) where pi,y,z = PΩiv,y (Xvi = z) for each
1 ≤ i ≤ d and y, z ∈ X that y 6= z. This already gives us a procedure, called



the computation tree recursion, for computing the exact value of a marginal
probability PΩ(Xv = x). Note that it terminates since each partial pinning Ωiv,y
deletes a vertex v from the current underlying graph.

It is easy to verify the following closure property of the computation tree
recursion: If each pi,y,z is replaced by an estimation P̂Ωiv,y (Xvi = z) of marginal

PΩiv,y (Xvi = z) such that P̂Ωiv,y (Xvi = z) ∈ [0, 1] and
∑
z 6=y P̂Ωiv,y (Xvi = z) ≤ 1

then the outcome of the recursion P̂Ω(Xv = x) = fΩ,v,x(p) as an estimation of

PΩ(Xv = x) still satisfies that P̂Ω(Xv = x) ∈ [0, 1] and
∑
x∈X P̂Ω(Xv = x) = 1.

The size of the computation tree can be easily of exponential in the size of
the underlying graph. We can run the computation tree recursion up to t levels
and use a naive estimation of marginals for the base cases. Formally, for t ≥ 0,

the quantity P̂(t)
Ω (Xv = x) is recursively defined as follows:

– If t = 0, let P̂(0)
Ω (Xv = x) = Fv(x)∑

y∈X Fv(y)
.

– If t > 0, let P̂(t)
Ω (Xv = x) = fΩ,v,x(p̂) where p̂i,y,z = P̂(t−1)

Ωiv,y
(Xvi = z) for each

1 ≤ i ≤ d and y, z ∈ X that y 6= z.

The value of the base case P̂(0)
Ω (Xv = x) is not important due to a correlation

decay property we prove later. As shown in [10], on graphs of constant maximum

degrees, the quantity P̂(t)
Ω (Xv = x) can be efficiently computed by dynamic

programming when t = O(log n).
The partition function can be approximated from estimations of marginals by

the following standard procedure. Enumerate the vertices in V as v1, v2, . . . , vn.

1. Let Ω1 = Ω. For k = 1, 2, . . . , n, assuming that the Ωk is well-defined, use

the computation tree recursion to compute P̂(t)
Ωk

(Xvk = x) for all x ∈ X ,

choose xk to be the x which maximizes the P̂(t)
Ωk

(Xvk = x) and construct
Ωk+1 = Pinvk,xk(Ωk) as a pinning of Ωk.

2. Compute that Ẑ(Ω) =
∏
e=uv∈E Ae(xu,xv)

∏
v∈V Fv(xv)∏n

k=1 P̂(t)
Ωk

(Xvk=xvk )
and return Ẑ(Ω).

This algorithm is the same as the one proposed in [10], except for using a
simplified computation tree recursion, thus by the same analysis as in [10], we
have the following proposition.

Proposition 2. Let Ω = (G,X ,A,F ) be an MRF instance such that G has

maximum degree ∆ and q = |X |. The value of Ẑ(Ω) can be computed in time
poly(|Ω|) · (q∆)O(t).

3.2 Correlation decay on the computation tree

The above algorithm approximates the marginal probabilities by simulating a
tree-structured dynamical system for a limited number of iterations. The accu-
racy of this approximation relies on the following property of correlation decay.



Definition 2 (Correlation Decay). Let M be a family of MRFs. We say that
the computation tree recursion exhibits exponential correlation decay over M if
there exists a constant C > 0 such that given any MRF instance Ω ∈M, for all
t ≥ 1, it holds that

max
v∈VΩ
x∈X

∣∣∣PΩ(Xv = x)− P̂(t)
Ω (Xv = x)

∣∣∣ ≤ poly(|Ω|) · exp(−C · t).

A sufficient condition for the exponential correlation decay is that the error
of estimation decays by a constant factor in every iteration. However, in general,
the systems exhibiting correlation decay may not necessarily decay in every step.
This issue has been addressed by a potential-based analysis in [19, 20, 22, 23]
for self-avoiding walk trees for 2-spin systems, which is now formalized as the
following condition for computation trees for multi-spin systems.

Definition 3 (The Amortized Decay Condition). Let M be a family of q-
state MRFs. We say that M satisfies the Amortized Decay Condition if there
exists a strictly increasing differentiable function ϕ : [0, 1] → R satisfying the
following conditions:

1. Let Φ(x) = dϕ(x)
d x denote the derivative of function ϕ. We call Φ(·) the

potential function. The values of Φ(·) and 1
Φ(·) are bounded by poly(q) over

domain [0, 1].

2. Given an MRF instance Ω ∈M, a vertex v ∈ VΩ with d = deg(v) and a spin
state x ∈ X , let f = fΩ,v,x be the computation tree recursion defined by (6),
and define the amortized decay rate as

κ(p) ,
∑

1≤i≤d
y 6=z

∣∣∣∣ ∂f(p)

∂pi,y,z

∣∣∣∣ Φ(f(p))

Φ(pi,y,z)
. (7)

There exists a constant 0 < κ < 1, such that for every MRF instance Ω ∈
M, vertex v ∈ VΩ and spin state x ∈ X , it holds that κ(p) ≤ κ for all
p = (pi,y,z, 1 ≤ i ≤ d ∧ y, z ∈ X ∧ y 6= z) ∈ [0, 1]dq(q−1) satisfying that∑
z 6=y pi,y,z ≤ 1 for all i and y.

We may replace the first condition by a more sophisticated bound on the values
of |Φ(·)| and 1

|Φ(·)| , which will give us more freedom to choose potential functions,

although the current simple bound is sufficient for our analysis.

We say a family M of MRF instances is closed under partial pinning if for
every Ω = (G,X ,A,F ) ∈ M, every vertex v ∈ VG with d = deg(v), spin state
x ∈ X and 1 ≤ i ≤ d, it holds for the partial pinning Ωiv,x of Ω that Ωiv,x ∈M.

Lemma 1. Let M be a family of MRFs which is closed under partial pinning.
If M satisfies the amortized decay condition then the computation tree recursion
exhibits exponential correlation decay over M.



Proof. Pick an MRF instance Ω ∈ M, a vertex v ∈ VΩ with d neighbors
v1, v2, . . . , vd and a spin state x ∈ X . Let ϕ : [0, 1] → R be the monotone
differentiable function and Φ(·) be its derivative, as required by the amortized
decay condition. Consider the corresponding recursion f = fΩ,v,x.

We define the following notations: Let p = PΩ(Xv = x), p̂ = P̂(t)
Ω (Xv = x),

and for every 1 ≤ i ≤ d and y, z ∈ X that y 6= z, let pi,y,z = PΩiv,y (Xvi = z) and

p̂i,y,z = P̂(t−1)
Ωiv,y

(Xvi = z). Obviously, we have p = f(p) and p̂ = f(p̂). We also

denote that ξ = ϕ(p), ξ̂ = ϕ(p̂), ξi,y,z = ϕ(pi,y,z) and ξ̂i,y,z = ϕ(p̂i,y,z), respec-
tively. Let ε = |p− p̂| = |f(p)− f(p̂)|, δ = |ϕ(p)− ϕ(p̂)| = |ϕ(f(p))− ϕ(f(p̂))|,
εi,y,z = |pi,y,z− p̂i,y,z|, and δi,y,z = |ϕ(pi,y,z)−ϕ(p̂i,y,z)| be the respective errors.
We have

δ =
∣∣∣ξ − ξ̂∣∣∣ = |ϕ(f(p))− ϕ(f(p̂))| =

∣∣ϕ (f (ϕ−1 (q)
))
− ϕ

(
f
(
ϕ−1 (q̂)

))∣∣ .
Due to the Mean Value Theorem, there exist ξ̃i,y,z ∈ [0, 1] and accordingly

p̃i,y,z = ϕ−1(ξ̃i,y,z), 1 ≤ i ≤ d, y, z ∈ X , y 6= z, such that

δ =
∑

1≤i≤d
y 6=z

∣∣∣∣ ∂f(p̃)

∂p̃i,y,z

∣∣∣∣ Φ(f(p̃))

Φ(p̃i,y,z)
· δi,y,z ≤ κ(p̃) · max

1≤i≤d
y 6=z

δi,y,z,

where κ(p) is defined by (7). Since M satisfies the amortized decay condition,
there exists a universal constant κ < 1 such that κ(p̃) ≤ κ. And since M is closed
under partial pinning, every Ωiv,y still belongs to M. Therefore, by induction we
have that δ ≤ κtδ0, where δ0 = |ϕ(p0)−ϕ(p̂0)| such that p0 = PΩ′(Xu = w) and

p̂0 = P̂(0)
Ω′ (Xu = w) for some Ω′ ∈ M, u ∈ VΩ′ and x ∈ X , where Ω′ is an MRF

instance resulting from applying t partial pinnings on the original Ω.
By the Mean Value Theorem, there exists a p̃0 ∈ [0, 1] such that δ0 = |ϕ(p0)−

ϕ(p̂0)| ≤ |Φ(p̃0)|, which is upper bounded by qc for some constant c due to the
requirement of amortized decay condition, thus δ ≤ κtδ0 ≤ qcκt. Recall that
δ = |ϕ(p)− ϕ(p̂)|. Also by the Mean Value Theorem there exists p̃ ∈ [0, 1] such
that δ = |ϕ(p)−ϕ(p̂)| = |Φ(p̃)||p− p̂| = |Φ(p̃)|ε, thus ε = δ

|Φ(p̃)| ≤ q
cδ. Altogether

we have that∣∣∣PΩ(Xv = x)− P̂(t)
Ω (Xv = x)

∣∣∣ = ε ≤ qcδ ≤ qcκtδ0 ≤ q2cκt.

And this holds for every Ω ∈ M, v ∈ VΩ , x ∈ X and t ≥ 1, with the univer-
sal constants c and κ < 1, which implies the exponential correlation decay of
computation tree recursion over M.

The following lemma is proved by verifying the amortized decay condition.

Lemma 2. Let M be a family of MRFs satisfying (1). The computation tree
recursion exhibits exponential correlation decay over M.

Proof. Let M∗ be the closure of M under partial pinning, thus every instance
from M∗ is either an instance Ω ∈M or an outcome of successive partial pinnings



of it, and the family M∗ is closed under partial pinning. We show that M∗ satisfies
the amortized decay condition. We choose a monotone function ϕ : [0, 1] → R

so that its derivative Φ satisfies that Φ(p) =
(
p+ 1

100q

)−1
. Thus both Φ(·) and

1
Φ(·) are bounded by polynomial of q over [0, 1].

Let Ω = (G,X ,A,F ) ∈ M∗ be an MRF instance on an underlying graph G
with maximum degree ∆, v ∈ VG a vertex with d = deg(v), and x ∈ X a spin
state. Let f = fΩ,v,x be the recursion defined by (6).

We define some shorthand notations. For each 1 ≤ i ≤ d and y, z ∈ X that

y 6= z, let ai,y,z = 1− Avvi (y,z)

Avvi (y,y)
and by = Fv(y)

∏d
i=1Avvi(y, y), and denote that

si,y = 1−
∑
z 6=y ai,y,z ·pi,y,z, sy = by

∏d
i=1 si,y, and s =

∑
y∈X sy. Then we have

f(p) =
bx
∏d
i=1

(
1−

∑
z 6=x ai,x,z · pi,x,z

)
∑
y∈X by

∏d
i=1

(
1−

∑
z 6=y ai,y,z · pi,y,z

) =
sx
s
.

For p = (pi,y,z, 1 ≤ i ≤ d; y, z ∈ X ; y 6= z) ∈ [0, 1]dq(q−1) such that
∑
z 6=y pi,y,z ≤

1 for all i and y, it holds that si,y ≥ 0 for any i and y, and f(p) ∈ [0, 1]. The
partial derivatives satisfy:∣∣∣∣ ∂f(p)

∂pi,x,z

∣∣∣∣ =

∣∣∣∣ai,x,zsx (s− sx)

s2 · si,x

∣∣∣∣ = f(p)(1− f(p))
|ai,x,z|
si,x

,

∑
y 6=x

∣∣∣∣ ∂f(p)

∂pi,y,z

∣∣∣∣ =
∑
y 6=x

∣∣∣∣ai,y,zsxsys2 · si,y

∣∣∣∣ = f(p)
∑
y 6=x

sy
s

d∑
i=1

|ai,y,z|
si,y

.

The amortized decay rate defined by (7) is then bounded as

κ(p) =
∑

1≤i≤d
y 6=z

∣∣∣∣ ∂f(p)

∂pi,y,z

∣∣∣∣ Φ(f(p))

Φ(pi,y,z)

= f(p)(1− f(p))Φ(f(p))

d∑
i=1

1

si,x

∑
z 6=x

|ai,x,z|
Φ(pi,x,z)

+ f(p)Φ(f(p))
∑
y 6=x

sy
s

d∑
i=1

1

si,y

∑
z 6=y

|ai,y,z|
Φ(pi,y,z)

≤
∑

1≤i≤d
z 6=x

|ai,x,z|
si,x

·
(
pi,y,z +

1

100q

)
+ max

y 6=x

∑
1≤i≤d
z 6=y

|ai,y,z|
si,y

·
(
pi,y,z +

1

100q

)

≤ 101

50
∆ · max

1≤i≤d
z 6=y

|ai,y,z|
si,y

.

For every 1 ≤ i ≤ d and y, z ∈ X that y 6= z, it can be verified that si,y =

pi,y,y +
∑
z 6=y

Avvi (y,z)

Avvi (y,y)
· pi,y,z ≥ 1

cA
, and

|ai,y,z| =
∣∣∣∣1− Avvi(y, z)

Avvi(y, y)

∣∣∣∣ ≤ max

{
cA − 1

cA
, cA − 1

}
≤ cA − 1.



Note that the partial pinning does not affect the edge activity A, thus for M
satisfying (1), for every Ω ∈ M∗ the cA still satisfies that 3∆(cA − 1) ≤ 1.
Therefore,

κ(p) ≤ 101

50
∆cA(cA − 1) ≤ 101

150
(1 +

1

3∆
) ≤ 404

450
< 1.

Therefore, the MRF family M∗ satisfies the amortized decay condition. By
Lemma 1, the computation tree recursion exhibits exponential correlation decay
over M∗ thus also over its subfamily M.

Proof of Theorem 3: Let Ω = (G,X ,A,F ) ∈ M be an MRF instance
and G = (V,E). Enumerate the vertices in V as v1, v2, . . . , vn. For each 1 ≤
k ≤ n, let P(t)

Ωk
(Xvk = xk) be computed by the algorithm in Section 3.1, where

Ω1 = Ω and Ωk+1 = Pinvk,xk(Ωk). It is easy to verify that Ωk still satisfies
the condition (1) for every k since pinning increases neither ∆ nor cA. Let

Ẑ(Ω) = w(x)∏n
k=1 P̂(t)

Ωk
(Xvk=xvk )

where w(x) =
∏
e=uv∈E Ae(xu, xv)

∏
v∈V Fv(xv). It

holds that

PΩ(X = x) =

n∏
k=1

PΩ(Xvk = xk | ∀1 ≤ i < k,Xvi = xi).

As observed in [10], the marginal probability PΩ(Xvk = xk | ∀1 ≤ i < k,Xvi =
xi) = PΩk(Xvk = xk).

Since Ωk satisfies the condition (1), by Lemma 2, there exists constant C > 0
such that∣∣∣PΩk(Xvk = xvk)− P̂(t)

Ωk
(Xvk = xvk)

∣∣∣ ≤ poly(|Ω|) · exp(−C · t).

Thus by choosing appropriate t = O
(
log 1

ε + log q + log n
)
, it holds for every k

that ∣∣∣PΩk(Xvk = xvk)− P̂(t)
Ωk

(Xvk = xvk)
∣∣∣ ≤ ε

4qn
,

and since in the algorithm we always choose the xvk maximizing the value of

P̂(t)
Ωk

(Xvk = xvk), we have P̂(t)
Ωk

(Xvk = xvk) ≥ 1
q thus PΩk(Xvk = xvk) ≥ 1

q−
ε

4qn ≥
1
2q .

By definition we have PΩ(X = x) = w(x)
Z(Ω) , thus Z(Ω) = w(x)∏n

k=1 PΩk (Xvk=xvk )
.

Therefore, we have

1− ε ≤
(

1− ε

2n

)n
≤ Z(Ω)

Ẑ(Ω)
=

n∏
k=1

P̂(t)
Ωk

(Xvk = xvk)

PΩk(Xvk = xvk)
≤
(

1 +
ε

2n

)n
≤ 1 + ε,

which is simplified as that 1− ε ≤ Ẑ(Ω)
Z(Ω) ≤ 1 + ε.

By Proposition 2, the total running time is bounded by poly(|Ω|)(q∆)O(t).
Since t = O

(
log 1

ε + log q + log n
)
, the algorithm is an FPTAS if q and ∆ are

constants, and in general the running time is bounded by |Ω|O(log |Ω|) for any
fixed 0 < ε < 1. ut



4 List-coloring

We consider list-coloring instances Ω = (G,X ,L) satisfying the condition (3).
Let ∆ = ∆G be the maximum degree of G and define that χ(∆) = (α−1)∆+ 1.
The condition (3) implies the following weaker condition:

∀v ∈ V, |Lv| − deg(v) ≥ χ(∆). (8)

A merit of considering this weaker condition is that it is closed under partial
pinning and pinning. The pinning and partial pinning can be defined on list-
coloring instances as they are special cases of MRFs. Given a list-coloring in-
stance Ω = (G,X ,L) with underlying graph G = (V,E) and a vertex v ∈ V
with d neighbors v1, v2, . . . , vd, for each color x ∈ Lv, the pinning of Ω is a new
list-coloring instance Ωv,x = Pinv,x(Ω) = (Gv,X , L̂), where Gv is the subgraph

of G induced by V \ {v} and L̂ = (L̂u, u ∈ V \ {v}) such that L̂u = Lu \ {x}
if u is adjacent to v and L̂u = Lu if otherwise; and for each 1 ≤ i ≤ d + 1,
the partial pinning of Ω is a new list-coloring instance Ωiv,x = (Gv,X , L̃), where

L̃ = (L̃u, u ∈ V \ {v}) such that L̃u = Lu \ {x} for u = vj with j < i and

L̃u = Lu for all other u in V \ {v}. The pinning and the partial pinning does
not violate the condition (8) since it never increases the maximum degree, and
if |Lv| decreases by 1 then also deg(v) decreases by 1.

The following identity for marginals of list-coloring is proved in [10].

Proposition 3. Let Ω = (G,X ,L) be a list-coloring instance on graph G =
(V,E), v ∈ V a vertex with d neighbors v1, v2, . . . , vd where d = deg(v), and
x ∈ Lv a color. It holds that

PΩ(Xv = x) =

∏d
i=1

(
1− PΩiv,x(Xvi = x)

)
∑
y∈Lv

∏d
i=1

(
1− PΩiv,x(Xvi = y)

) .
Some simple lower and upper bounds hold for the marginals, similar to the

ones proved in [10].

Lemma 3. Let Ω = (G,X ,L) be a list-coloring instance with the maximum
degree ∆ of G, satisfying the condition (8). For any vertex v ∈ VG and any color
x ∈ Lv, it holds for the marginal probability that 1

q·e
1

α−1
≤ PΩ(Xv = x) ≤ 1

χ(∆) .

Proof. The upper bound is easy: conditioning on any coloring of the neighbos
of v, the number of remaining colors for v is at least |Lv| − deg(v) ≥ χ(∆),
thus marginal probability is at most 1

χ(∆) . Applying the upper bound 1
χ(∆) to

the marginals in the numerator of the recursion in Proposition 3 and the trivial
upper bound q to the denominator, we have the lower bound 1

q·e
1

α−1
.



4.1 The computation tree recursion with adjustment

Given a list-coloring instance Ω = (G,X ,L) on graph G = (V,E), a vertex
v ∈ V with d neighbors v1, v2, . . . , vd and a color x ∈ Lv, the computation tree
recursion fΩ,v,x can be defined on the domain of all p = (pi,y, 1 ≤ i ≤ d ∧ y ∈
Lv) ∈ [0, 1]d|Lv|:

fΩ,v,x(p) ,

∏d
i=1(1− pi,x)∑

y∈Lv
∏d
i=1(1− pi,y)

. (9)

For t ≥ 0, the quantity P̂(t)
Ω (Xv = x) is recursively defined as follows:

– If t = 0, let P̂(0)
Ω (Xv = x) = 1

|Lv| .

– If t > 0, let P̂(t)
Ω (Xv = x) = min

{
1

|Lv|−d , fΩ,v,x(p̂)
}

, where the p̂ is taken as

that p̂i,y = P̂(t−1)
Ωiv,x

(Xvi = y) for each 1 ≤ i ≤ d and y ∈ Lv.

Note that the only difference from the MRF case is the truncation of the value of
f(p̂) so that PΩ(Xv = x) never goes beyond the naive upper bound 1

|Lv|−d . We

call this procedure the computation tree recursion with adjustment. It is the same
as the procedure proposed in [10] except with a more simplified value truncation.

The estimation Ẑ(Ω) of the partition function is computed from these es-

timations P̂(t)
Ω (Xv = x) of marginal probabilities by the same algorithm as in

Section 3.1. The same complexity bound as in Proposition 2 still holds.

4.2 Correlation Decay

The correlation decay of the computation tree recursion with adjustment can be
defined in the same way as in Definition 2.

Lemma 4. The computation tree recursion with adjustment exhibits exponential
correlation decay on list-coloring instances satisfying the condition (8) with α >
α∗ where α∗ ≈ 2.58071 is defined by (2) in Section 2.

Proof. Let Ω = (G,X ,L) be a list-coloring instance on the underlying graph
G = (V,E) with the maximum degree ∆ = ∆(G) satisfying the condition (8).
It can be verified that all the list-coloring instances generated by recursively
applying partial pinnings on Ω still satisfy the condition (8).

Let v ∈ V be a vertex with d neighbors v1, v2, . . . , vd, x ∈ Lv a color, and
f = fΩ,v,x the recursion defined by (9). It holds that PΩ(Xv = x) = f(p)
where p = (pi,y, 1 ≤ i ≤ d ∧ y ∈ Lv) and each pi,y = PΩiv,x(Xvi=y). We choose

the monotone differentiable function ϕ : [0, 1] → R so that its derivative is

Φ(p) = dϕ(p)
d p = 1

(1−p)√p . We define the amortized decay rate in the same way

as (7) by:

κ(p) ,
∑

1≤i≤d
y∈Lv

∣∣∣∣∂f(p)

∂pi,y

∣∣∣∣ Φ(f(p))

Φ(pi,y)
.



By the same analysis as in Lemma 1, due to the mean value theorem, we have∣∣∣ϕ (PΩ(Xv = x))− ϕ
(
P̂(t)
Ω (Xv = x)

)∣∣∣
≤κ(p) · max

1≤i≤d
y∈Lv

∣∣∣ϕ(PΩiv,x(Xvi = y)
)
− ϕ

(
P̂(t−1)
Ωiv,x

(Xvi = y)
)∣∣∣ ,

for some p = (pi,y, 1 ≤ i ≤ d∧y ∈ Lv) such that the value of each pi,y is between

PΩiv,x(Xvi = y) and P̂(t−1)
Ωiv,x

(Xvi = y). By Lemma 3, we have PΩ(Xvi = y) ≤ 1
χ(∆)

and due to the definition of the algorithm, P̂(t)
Ω (Xvi = y) ≤ 1

|Lv|−d ≤
1

χ(∆) , thus

pi,y ≤ 1
χ(∆) for any 1 ≤ i ≤ d and y ∈ Lv.

By our choice of Φ(·), it can be verified that

κ(p) =
d∑
i=1

∣∣∣∣∂f(p)

∂pi,x

∣∣∣∣ Φ(f(p))

Φ(pi,x)
+

∑
1≤i≤d

y∈Lv\{x}

∣∣∣∣∂f(p)

∂pi,y

∣∣∣∣ Φ(f(p))

Φ(pi,y)

≤
√
f(p)

(
d∑
i=1

√
pi,x +

d∑
i=1

max
y 6=x

√
pi,y

)

≤

√√√√√ ∏d
i=1(1− pi,x)

(d+ χ(∆))
(

1− 1
χ(∆)

)d
(

d∑
i=1

√
pi,x +

d√
χ(∆)

)
, (10)

where the last inequality is due to that pi,x ≤ 1
χ(∆) and |Lv| ≤ d + χ(∆).

Let p̄ = 1 −
(∏d

i=1(1− pi,x)
) 1
d

. Then p̄ ≤ 1
χ(∆) since all pi,x satisfy so, and∏d

i=1(1− pi,x) = (1− p̄)d. Let `i = ln(1− pi,x), thus
∑d
i=1 `i = d ln(1− p̄). The

function g(x) =
√

1− ex is concave over x ≤ 0, thus by Jensen’s inequality,

d∑
i=1

√
pi,x =

d∑
i=1

g(`i) ≤ d · g

(
1

d

d∑
i=1

`i

)
= d
√
p̄.

Therefore, (10) can be bounded by its symmetrized form as follows:

κ(p) ≤ κ(p̄) ,
d√

d+ χ(∆)

(
1− p̄

1− 1
χ(∆)

) d
2
(
√
p̄+

1√
χ(∆)

)

≤ ∆√
∆+ χ(∆)

(
1− p̄

1− 1
χ(∆)

)∆
2
(
√
p̄+

1√
χ(∆)

)
.

where the last inequality is due to that p̄ ≤ 1
χ(∆) and d ≤ ∆.

Let p̄ = ρ
χ(∆) for ρ ∈ [0, 1]. It holds that κ(p̄) ≤ (

√
ρ+1)√

α(α−1)
exp

(
− ρ−1

2(α−1)

)
,

whose maximum is achieved when ρ = 1
2 (2α− 1−

√
4α− 3), such that

κ(p̄) ≤ κα ,

√
2 +

√
2α− 1−

√
4α− 3√

2α(α− 1)
exp

(
3− 2α+

√
4α− 3

4(α− 1)

)
.



It can be verified that κα is is monotonously decreasing from +∞ to 0 for α > 1,
so κα < 1 if α > α∗ where α∗ is the unique solution to κα = 1, as defined by (2).

Since the condition (8) is closed under partial pinning, by induction we have∣∣∣ϕ (PΩ(Xv = x))− ϕ
(
P̂(t)
Ω (Xv = x)

)∣∣∣
≤κt

∣∣∣ϕ (PΩ′(Xu = z))− ϕ
(
P̂(0)
Ω′ (Xu = z)

)∣∣∣ ,
where Ω′ = (G′,X ,L′) is a list-coloring instance resulting from recursively ap-
plying t partial pinnings on the original Ω. By the same mean value theorem

argument as in Lemma 1, we have
∣∣∣PΩ(Xv = x)− P̂(t)

Ω (Xv = x)
∣∣∣ ≤ Φ(p̃0)

Φ(p̃) κ
t
α, for

some p̃ ∈ [0, 1] and some p̃0 between PΩ′(Xu = w) and P̂(0)
Ω′ (Xu = w) = 1

|L′u|
.

Recall that the condition (8) is closed under partial pinning. It holds that
1
q ≤

1
|L′v|
≤ 1

χ(∆(G′)) , and by Lemma 3 it also holds that 1
q·e1/(α−1) ≤ PΩ′(Xu =

w) ≤ 1
χ(∆(G′)) . Therefore, p̃0 ∈

[
1

q·e1/(α−1) ,
1

χ(∆(G′))

]
. By our choice of Φ(p), we

have Φ(p̃0)
Φ(p̃) ≤

√
q·e

1
2(α−1)

1− 1
χ(∆(G′))

= O(
√
q).

In conclusion, if the condition (8) is satisfied with α > α∗ ≈ 2.58071, there

exists a constant κ < 1 such that
∣∣∣PΩ(Xv = x)− P̂(t)

Ω (Xv = x)
∣∣∣ ≤ O(

√
q)κt.

Proof of Theorem 4: We first prove the theorem under the weaker con-
dition (8), which is closed under pinning and partial pinning. The proof is the
same as the proof of Theorem 3. The theorem with the stronger condition (3)
follows as a consequence. ut

References

1. A. Bandyopadhyay and D. Gamarnik. Counting without sampling: Asymptotics of
the log-partition function for certain statistical physics models. Random Structures
& Algorithms, 33(4):452–479, 2008.

2. M. Bayati, D. Gamarnik, D. Katz, C. Nair, and P. Tetali. Simple deterministic
approximation algorithms for counting matchings. In Proceedings of STOC, pages
122–127, 2007.

3. J.-Y. Cai and X. Chen. A decidable dichotomy theorem on directed graph ho-
momorphisms with non-negative weights. In Proceedings FOCS, pages 437–446,
2010.

4. J.-Y. Cai, X. Chen, and P. Lu. Graph homomorphisms with complex values: A
dichotomy theorem. In Proceedings of ICALP, pages 275–286, 2010.

5. M. Dyer, M. Jerrum, and E. Vigoda. Rapidly mixing markov chains for disman-
tleable constraint graphs. In RANDOM, pages 68–77. 2002.

6. M. E. Dyer, A. M. Frieze, T. P. Hayes, and E. Vigoda. Randomly coloring constant
degree graphs. In Proceedings of FOCS, pages 582–589, 2004.

7. M. E. Dyer and C. S. Greenhill. On markov chains for independent sets. Journal
of Algorithms, 35(1):17–49, 2000.
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