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ferromagnetic:

[Jerrum-SinclairÕ93]

!" > 1

FPRAS: [Goldberg-Jerrum-PatersonÕ03]

anti-ferromagnetic: !" < 1

hardcore model:

Ising model:

! = 0, " = 1

! = "

!  FPTAS for graphs 
of max-degree !

(! , " , #) lies in the interior of 
uniqueness region of ! -regular tree

[Sinclair-Srivastava-ThurleyÕ12]

[WeitzÕ06]
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FPRAS for arbitrary graphs

[Li-Lu-Y. Õ12]: no external Þeld

FPTAS for arbitrary graphs



anti-ferromagnetic: !" < 1

!  FPTAS for graphs of max-degree !

(! , " , #) lies in the interiors of uniqueness 
regions of d-regular trees for all d " ! .

"  FPRAS for graphs of max-degree !

(! , " , #) lies in the interiors of non-uniqueness 
regions of d-regular trees for some d " ! .

assuming
NP ! RP

[Sly-SunÕ12][Galanis-Stefankovic-VigodaÕ12]:

bounded ! or !=#



Uniqueness Condition

(d+1)-regular tree

reg.
treet

arbitrary boundary conÞg

marginal 
at root ± exp(-t)
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Correlation Decay

strong spatial mixing (SSM):
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exponential 
correlation decay

weak spatial mixing (WSM):

uniqueness:  WSM in reg. tree
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Self-Avoiding Walk Tree
due to Weitz (2006)
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Potential Analysis
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anti-ferromagnetic: !" < 1

!  FPTAS for graphs of max-degree !
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SSM in graphs of max-degree !

SSM in trees of max-degree !

bounded !

|f !
! (öx! )| < 1 SSM in !- reg. treeSSMin reg. trees: WSM

[WeitzÕ06] + [Sinclair-Srivastava-ThurleyÕ12] + translation
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Computationally EfÞcient 
Correlation Decay

for some
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Computationally EfÞcient 
Correlation Decay
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Computationally EfÞcient 
Correlation Decay
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anti-ferromagnetic: !" < 1

!  FPTAS for graphs of max-degree !

bounded ! or !=#

WSM in d-reg. trees for d " !  

hardcore model

Ising model[Sinclair-Srivastava-ThurleyÕ12]

[WeitzÕ06]

uniqueness condition:
WSM in ! -reg. tree
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1 The Monotonicity of the Contraction Ratio
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Figure 1: cd again d. For both two curves, we Þx ! = 0 and " = 150. The curve above is when# = 1, while
below # = 1 .001. Notice the shape of the curve changed dramatically. Moreover,cd < 1 holds everywhere for the
setting below, while it only holds for d up to about 350 for the setting above.

In Theorem, the criterion of SSM is to check if c is less than 1, wherec is the maximum value among all cd

for all possible numberd of children for any vertex in the tree. For a graph with degree boundD, the set of all
possible suchd in the corresponding SAW tree is{ d|d ! D } . Thus, we would like to investigate the property of
cd as a function of d. In particular, we want to know if cd is monotonic with respect to d. If so, then we only
need to check ifcD < 1 at the degree boundD.

Our parameters (#, ! , " ) always satisfy that #! < 1, #, ! " 0, and " " 0. It turns out that if 0 ! #, ! ! 1,
then cd is monotonic in d; otherwisecd is a single-peaked function ind, and there exists a unique maximum point.
Moreover, cd is increasing before it and decreasing afterwards. The rest of this section is devoted to prove this.

Recall that cd = xd(1 # xd) d(1 ! !" )
H (x d ) , where xd is the Þxing point of f d(x) such that x = f d(x). For simplicity,

we drop the constant factor of (1# #! ) and set c(d) = dx d (1 ! x d )
H (x d ) . Also notice that we considerd as a positive
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Open Problems
¥ Characterization of SSM in ferromagnetic 2-state spin 

systems.

¥ SSM in multi-state spin systems:

¥ difÞculty: no SAW-tree;

¥ implications: WSM vs. SSM in reg. trees, monotonicity of 
WSM/SSM w.r.t degree.

¥ Apply potential analysis and computationally efÞcient 
correlation decay to other problems.
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