Correlation Decay up to Uniqueness in Spin Systems

Yitong Yin Nanjing University

Joint work with Liang Li (Peking Univ) Pinyan Lu (Microsoft research Asia)

Two-State Spin System

graph G=(V,E) 2 states $\{0,1\}$

configuration $\sigma: V \to \{0, 1\}$

$$A = \begin{bmatrix} A_{0,0} & A_{0,1} \\ A_{1,0} & A_{1,1} \end{bmatrix} = \begin{bmatrix} \beta & 1 \\ 1 & \gamma \end{bmatrix}$$

$$b = (b_0, b_1) = (\lambda, 1)$$

$$w(\sigma) = \prod_{(u,v)\in E} A_{\sigma(u),\sigma(v)} \prod_{v\in V} b_{\sigma(v)}$$

edge activity: \bigcirc^{β} \bigcirc^{γ} \bigcirc^{1}

external field:

$$\lambda$$

Two-State Spin System

graph G=(V,E) 2 states $\{0,1\}$

configuration $\sigma: V \to \{0, 1\}$

$$A = \begin{bmatrix} A_{0,0} & A_{0,1} \\ A_{1,0} & A_{1,1} \end{bmatrix} = \begin{bmatrix} \beta & 1 \\ 1 & \gamma \end{bmatrix}$$

$$b = (b_0, b_1) = (\lambda, 1)$$

$$w(\sigma) = \prod_{(u,v)\in E} A_{\sigma(u),\sigma(v)} \prod_{v\in V} b_{\sigma(v)}$$

Gibbs measure:
$$\Pr(\sigma) = \frac{w(\sigma)}{Z(G)}$$

partition function: $Z(G) = \sum w(\sigma)$ $\sigma \in \{0,1\}^V$

$$A = \begin{bmatrix} A_{0,0} & A_{0,1} \\ A_{1,0} & A_{1,1} \end{bmatrix} = \begin{bmatrix} \beta & 1 \\ 1 & \gamma \end{bmatrix} \quad b = (b_0, b_1) = (\lambda, 1)$$

$$w(\sigma) = \prod_{(u,v)\in E} A_{\sigma(u),\sigma(v)} \prod_{v\in V} b_{\sigma(v)}$$

partition function:
$$Z(G) = \sum_{\sigma \in \{0,1\}^V} w(\sigma)$$

marginal probability:

$$\Pr_{\sigma}[\sigma(v) = 0 \mid \sigma(v_1), \dots, \sigma(v_k)]$$

$$\Pr(\tau) = \prod_{k=1}^{n} \Pr_{\sigma}[\sigma(v_k) = \tau(v_k) \mid \sigma(v_i) = \tau(v_i), 1 \le i < k]$$

$$= \frac{w(\tau)}{Z}$$

1/poly(n) additive error for marginal in poly-time \rightarrow FPTAS for Z(G)

ferromagnetic: $\beta \gamma > 1$

FPRAS: [Jerrum-Sinclair'93] [Goldberg-Jerrum-Paterson'03]

anti-ferromagnetic: $\beta \gamma < 1$

hardcore model: $\beta = 0, \gamma = 1$ [Weitz'06]

Ising model: $\beta = \gamma$ [Sinclair-Srivastava-Thurley'12]

 (β, γ, λ) lies in the interior of uniqueness region of Δ -regular tree

 \exists FPTAS for graphs of max-degree \triangle

[Goldberg-Jerrum-Paterson'03]

FPRAS for arbitrary graphs
[Li-Lu-Y.'12]: no external field

FPTAS for arbitrary graphs

anti-ferromagnetic: $\beta \gamma < 1$

bounded Δ or $\Delta = \infty$

 (β, γ, λ) lies in the interiors of uniqueness regions of *d*-regular trees for all $d \le \Delta$.

 \exists FPTAS for graphs of max-degree \triangle

[Sly-Sun' 12] [Galanis-Stefankovic-Vigoda' 12]:

 (β, γ, λ) lies in the interiors of non-uniqueness regions of d-regular trees for some $d \le \Delta$.

assuming $\not\exists$ FPRAS for graphs of max-degree Δ

Uniqueness Condition

(d+1)-regular tree

$$f_d(x) = \lambda \left(\frac{\beta x + 1}{x + \gamma}\right)^d$$

$$\hat{x}_d = f_d(\hat{x}_d)$$

$$|f'_d(\hat{x}_d)| < 1$$

anti-ferromagnetic: $\beta \gamma < 1$

$$\beta \gamma < 1$$

bounded Δ or $\Delta = \infty$

$$f_d(x) = \lambda \left(\frac{\beta x + 1}{x + \gamma}\right)^d$$

$$\forall d < \Delta, |f'_d(\hat{x}_d)| < 1$$

 \exists FPTAS for graphs of max-degree \triangle

[Sly-Sun'12] [Galanis-Stefankovic-Vigoda'12]:

$$\exists d < \Delta, |f'_d(\hat{x}_d)| > 1$$

 \exists FPRAS for graphs of max-degree \triangle

Correlation Decay

weak spatial mixing (WSM): $\forall \sigma_{\partial B}, \tau_{\partial B} \in \{0, 1\}^{\partial B}$

$$\Pr_{\sigma}[\sigma(v) = 0 \mid \sigma_{\partial B}] \approx \Pr_{\sigma}[\sigma(v) = 0 \mid \tau_{\partial B}]$$

strong spatial mixing (SSM):

$$\Pr_{\sigma}[\sigma(v) = 0 \mid \sigma_{\partial B}, \sigma_{\Lambda}] \approx \Pr_{\sigma}[\sigma(v) = 0 \mid \tau_{\partial B}, \sigma_{\Lambda}]$$

error $\leq \exp(-t)$

exponential correlation decay

uniqueness: WSM in reg. tree

Self-Avoiding Walk Tree

due to Weitz (2006)

preserve the marginal dist. at V

on bounded degree graphs:

SSM FPTAS

hardcore model, anti-ferro Ising model:

(for $\beta, \gamma < 1$)

WSM in Δ -reg. tree

SSM in graphs of degree $\leq \Delta$

hardcore model, anti-ferro Ising model:

(for $\beta, \gamma < 1$)

for general anti-ferro 2-state spin systems:

for general anti-ferro 2-state spin systems:

WSM in d-reg. trees for $d \le \Delta$

SSM in graphs of degree $\leq \Delta$

$$T = \begin{bmatrix} x \in [R, R + \delta] \\ T \\ \vdots \end{bmatrix}$$

$$T_1 = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ \vdots \end{bmatrix}$$

$$T_d = \begin{bmatrix} x \in [R, R + \delta] \\ v_d \\ T_d \\ \vdots \\ \vdots \end{bmatrix}$$

$$x \in [R, R + \delta]$$
 $\delta = \exp(-\Omega(n))$

$$x = \frac{\Pr[\sigma(v) = 0 \mid \sigma_{\Lambda}]}{\Pr[\sigma(v) = 1 \mid \sigma_{\Lambda}]}$$

x's in level $n \in [0, \infty)$

$$x = f(x_1, \dots, x_d) = \lambda \prod_{i=1}^d \left(\frac{\beta x_i + 1}{x_i + \gamma} \right)$$

Potential Analysis

$$f(x)$$

$$f \uparrow x$$

$$F_n(x) = \underbrace{f \circ f \circ \cdots \circ f}_{n}(x)$$

$$F_n(x+\delta) - F_n(x) = F'_n(x_0) \cdot \delta$$

$$= \delta \cdot \prod_{t=0}^{n-1} f'(x_t) \qquad x_t = f(x_{t-1})$$

$$= \delta \cdot \frac{\Phi(x_0)}{\Phi(x_n)} \cdot \prod_{t=0}^{n-1} \frac{\Phi(f(x_t))}{\Phi(x_t)} f'(x_t)$$

Potential Analysis

$$\phi'(x) = \Phi(x) = \frac{1}{\sqrt{x(\beta x + 1)(x + \gamma)}}$$

$$f(x_1, ..., x_d) = \lambda \prod_{i=1}^d \left(\frac{\beta x_i + 1}{x_i + \gamma} \right) \qquad g(y_1, ..., y_d) = \phi(f(\phi^{-1}(y_1), ..., \phi^{-1}(y_d)))$$

$$g(y_1, ..., y_d) - g(y_1 + \delta_1, ..., y_d + \delta_d)$$

$$= -\nabla \phi(f(\phi^{-1}(y_1), ..., \phi^{-1}(y_d))) \cdot (\delta_1, ..., \delta_d)$$

$$\leq \alpha(d; x_1, ..., x_d) \cdot \max_{1 \leq i \leq d} \{\delta_i\}$$

amortized decay rate

$$\alpha(d; x_1, ..., x_d)$$

$\alpha(d; x_1, ..., x_d)$ amortized decay rate

$$= \frac{(1 - \beta \gamma) \left(\lambda \prod_{i=1}^{d} \frac{\beta x_i + 1}{x_i + \gamma}\right)^{\frac{1}{2}}}{\left(\beta \lambda \prod_{i=1}^{d} \frac{\beta x_i + 1}{x_i + \gamma} + 1\right)^{\frac{1}{2}} \left(\lambda \prod_{i=1}^{d} \frac{\beta x_i + 1}{x_i + \gamma} + \gamma\right)^{\frac{1}{2}}} \cdot \sum_{i=1}^{d} \frac{x_i^{\frac{1}{2}}}{(\beta x_i + 1)^{\frac{1}{2}} (x_i + \gamma)^{\frac{1}{2}}}$$

Cauchy-Schwarz arithmetic and geometric means

$$\leq \alpha_d(x) \triangleq \alpha(d; \underbrace{x, \dots, x}_{d})$$

$$= \sqrt{\frac{d(1-\beta\gamma)x}{(\beta x+1)(x+\gamma)}} \sqrt{\frac{d(1-\beta\gamma)\lambda \left(\frac{\beta x+1}{x+\gamma}\right)^d}{\left(\beta\lambda \left(\frac{\beta x+1}{x+\gamma}\right)^d+1\right) \left(\lambda \left(\frac{\beta x+1}{x+\gamma}\right)^d+\gamma\right)}}$$

$$= \frac{\Phi(f(x))}{\Phi(x)} |f'(x)|$$

$$\alpha_d(x) = \sqrt{\frac{d(1-\beta\gamma)x}{(\beta x+1)(x+\gamma)}} \sqrt{\frac{d(1-\beta\gamma)\lambda \left(\frac{\beta x+1}{x+\gamma}\right)^d}{\left(\beta\lambda \left(\frac{\beta x+1}{x+\gamma}\right)^d+1\right)\left(\lambda \left(\frac{\beta x+1}{x+\gamma}\right)^d+\gamma\right)}}$$

$$= \sqrt{\frac{d(1-\beta\gamma)x}{(\beta x+1)(x+\gamma)}} \sqrt{\frac{d(1-\beta\gamma)f_d(x)}{(\beta f_d(x)+1)(f_d(x)+\gamma)}}$$

$$\leq \sqrt{\frac{d(1-\beta\gamma)\hat{x}}{(\beta\hat{x}+1)(\hat{x}+\gamma)}}$$
$$= \sqrt{|f'_d(\hat{x}_d)|}$$

$$f_d(x) = \lambda \left(\frac{\beta x + 1}{x + \gamma}\right)^d$$

$$\hat{x}_d = f_d(\hat{x}_d)$$

$$|f'_d(\hat{x}_d)| < 1$$

anti-ferromagnetic: $\beta \gamma < 1$

$$f_d(x) = \lambda \left(\frac{\beta x + 1}{x + \gamma}\right)^d$$

$$\forall d < \Delta, |f_d'(\hat{x}_d)| < 1$$

$$\Rightarrow \text{SSM in trees of max-degree } \Delta$$

$$\Rightarrow \text{SSM in graphs of max-degree } \Delta$$

$$\Rightarrow \text{FPTAS for graphs of max-degree } \Delta$$

$$\Rightarrow \text{bounded } \Delta$$

 $|f'_{\Delta}(i\hat{n}_{\Delta})|$ if $f'_{\Delta}(i\hat{n}_{\Delta})$ if $f'_{\Delta}(i\hat{n}_{\Delta})$

[Weitz'06] + [Sinclair-Srivastava-Thurley'12] + translation

requirement of potential function:

$$f(x) = \lambda \left(\frac{\beta x + 1}{x + \gamma}\right)^d \qquad \hat{x} = f(\hat{x})$$

uniqueness: $|f'(\hat{x})| < 1$

amortized decay: $|f'(x)| \cdot \frac{\Phi(f(x))}{\Phi(x)} < 1$

requirement of potential function:

$$f(x) = \lambda \left(\frac{\beta x + 1}{x + \gamma}\right)^d \qquad \hat{x} = f(\hat{x})$$

phase-trans: $|f'(\hat{x})| = 1$

amortized decay: $|f'(x)| \cdot \frac{\Phi(f(x))}{\Phi(x)}$

$$|f'(\hat{x})| \cdot \frac{\Phi(f(\hat{x}))}{\Phi(\hat{x})} = 1$$

$$\left[f'(x) \cdot \frac{\Phi(f(x))}{\Phi(x)} \right]' \Big|_{x=\hat{x}} = 0$$

$$\left(\ln(\Phi(\hat{x}))\right)' = -\frac{f''(\hat{x})}{2} = \frac{1}{2} \left(\frac{1}{\hat{x}} + \frac{1}{\hat{x} + \gamma} + \frac{\beta}{\beta \hat{x} + 1}\right)$$

requirement of potential function:

$$(\ln(\Phi(\hat{x})))' = \frac{1}{2} \left(\frac{1}{\hat{x}} + \frac{1}{\hat{x} + \gamma} + \frac{\beta}{\beta \hat{x} + 1} \right)$$

strengthen the requirement:

$$(\ln(\Phi(x)))' = \frac{1}{2} \left(\frac{1}{x} + \frac{1}{x+\gamma} + \frac{\beta}{\beta x+1} \right)$$

$$\Phi(x) = \frac{C}{\sqrt{x(\beta x + 1)(x + \gamma)}}$$

Computationally Efficient Correlation Decay

$$\delta \le \alpha_d(x) \cdot \max_{1 \le i \le d} \{\delta_i\}$$

$$\alpha_d(x) = \sqrt{\frac{d(1-\beta\gamma)x}{(\beta x+1)(x+\gamma)}} \sqrt{\frac{d(1-\beta\gamma)f_d(x)}{(\beta f_d(x)+1)(f_d(x)+\gamma)}}$$

$$\leq \alpha^{\lceil \log_M(d+1) \rceil}$$
 for some $\alpha < 1$
 $M > 1$

Computationally Efficient Correlation Decay

$$\delta \le \alpha_d(x) \cdot \max_{1 \le i \le d} \{\delta_i\}$$

$$\alpha_d(x) \leq \alpha^{\lceil \log_M(d+1) \rceil}$$

for some $\alpha < 1$ M > 1

for small d < M one-step recursion decays α

for large $d \geq M$ one-step recursion decays $\alpha^{\lceil \log_M (d+1) \rceil}$

behaves like $\lceil \log_M(d+1) \rceil$ steps!

Computationally Efficient Correlation Decay

correlation decay in new metric $\alpha^{
m distance}$ size grows exponentially: $M^{
m distance}$

distance = $O(\log n)$ 1/poly-precision in poly-time

anti-ferromagnetic: $\beta \gamma < 1$

WSM in d-reg. trees for $d \le \Delta$ \exists FPTAS for graphs of max-degree Δ

bounded Δ or $\Delta = \infty$

[Weitz'06] hardcore model

[Sinclair-Srivastava-Thurley'12] Ising model

uniqueness condition:

WSM in Δ -reg. tree

$$f_d(x) = \lambda \left(\frac{\beta x + 1}{x + \gamma}\right)^d$$

$$\hat{x}_d = f_d(\hat{x}_d)$$

$$|f_d'(\hat{x}_d)| < 1$$

$$\beta, \gamma \leq 1$$

WSM in Δ -reg. tree \Rightarrow WSM in d-reg. tree for $d \le \Delta$

$$\gamma > 1$$
 $\beta \gamma < 1$

WSM in D-reg. tree \Rightarrow WSM in all d-reg. trees

 (β, γ, λ) that WSM in Δ -reg. tree but not in $(\Delta$ -1)-reg. tree

[Weitz'06] + [Sinclair-Srivastava-Thurley'12] + translation

Open Problems

- Characterization of SSM in ferromagnetic 2-state spin systems.
- SSM in multi-state spin systems:
 - difficulty: no SAW-tree;
 - implications: WSM vs. SSM in reg. trees, monotonicity of WSM/SSM w.r.t degree.
- Apply potential analysis and computationally efficient correlation decay to other problems.

Thank you!