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ferromagnetic:

[Jerrum-Sinclair’93]

�� > 1

FPRAS: [Goldberg-Jerrum-Paterson’03]

anti-ferromagnetic: �� < 1

hardcore model:

Ising model:

� = 0, � = 1

� = �

∃ FPTAS for graphs 
of max-degree Δ

(β, γ, λ) lies in the interior of 
uniqueness region of Δ-regular tree

[Sinclair-Srivastava-Thurley’12]

[Weitz’06]
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FPRAS for arbitrary graphs

[Li-Lu-Y. ’12]: no external field

FPTAS for arbitrary graphs



anti-ferromagnetic: �� < 1

∃ FPTAS for graphs of max-degree Δ

(β, γ, λ) lies in the interiors of uniqueness 
regions of d-regular trees for all d ≤ Δ.

∄ FPRAS for graphs of max-degree Δ

(β, γ, λ) lies in the interiors of non-uniqueness 
regions of d-regular trees for some d ≤ Δ.

assuming
NP ≠RP

[Sly-Sun’12] [Galanis-Stefankovic-Vigoda’12]:

bounded Δ or Δ=∞



Uniqueness Condition
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Correlation Decay

strong spatial mixing (SSM):
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correlation decay

weak spatial mixing (WSM):

uniqueness:  WSM in reg. tree
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Self-Avoiding Walk Tree
due to Weitz (2006)
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on bounded degree graphs:
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Potential Analysis
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anti-ferromagnetic: �� < 1

∃ FPTAS for graphs of max-degree Δ
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bounded Δ
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[Weitz’06] + [Sinclair-Srivastava-Thurley’12] + translation



uniqueness: |f �(x̂)| < 1

amortized decay:
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Computationally Efficient 
Correlation Decay

for some

for small one-step recursion decays

for large one-step recursion decays

behaves like steps!
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Computationally Efficient 
Correlation Decay
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anti-ferromagnetic: �� < 1

∃ FPTAS for graphs of max-degree Δ

bounded Δ or Δ=∞

WSM in d-reg. trees for d ≤ Δ 

hardcore model

Ising model[Sinclair-Srivastava-Thurley’12]

[Weitz’06]

uniqueness condition:
WSM in Δ-reg. tree
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1 The Monotonicity of the Contraction Ratio
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Figure 1: cd again d. For both two curves, we fix γ = 0 and λ = 150. The curve above is when β = 1, while
below β = 1.001. Notice the shape of the curve changed dramatically. Moreover, cd < 1 holds everywhere for the
setting below, while it only holds for d up to about 350 for the setting above.

In Theorem, the criterion of SSM is to check if c is less than 1, where c is the maximum value among all cd
for all possible number d of children for any vertex in the tree. For a graph with degree bound D, the set of all
possible such d in the corresponding SAW tree is {d|d ≤ D}. Thus, we would like to investigate the property of
cd as a function of d. In particular, we want to know if cd is monotonic with respect to d. If so, then we only
need to check if cD < 1 at the degree bound D.

Our parameters (β, γ,λ) always satisfy that βγ < 1, β, γ ≥ 0, and λ ≥ 0. It turns out that if 0 ≤ β, γ ≤ 1,
then cd is monotonic in d; otherwise cd is a single-peaked function in d, and there exists a unique maximum point.
Moreover, cd is increasing before it and decreasing afterwards. The rest of this section is devoted to prove this.

Recall that cd = xd(1− xd)
d(1−βγ)
H(xd)

, where xd is the fixing point of fd(x) such that x = fd(x). For simplicity,

we drop the constant factor of (1 − βγ) and set c(d) = dxd(1−xd)
H(xd)

. Also notice that we consider d as a positive
real number throughout this section.

Take the derivative w.r.t. d, we get

c′(d) =
xd(1− xd)

H(xd)
+ d · ∂xd

∂d

(1− 2xd)H(xd)− xd(1− xd)H ′(xd)
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However, xd satisfies that x = f(x), then we have:
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Open Problems
• Characterization of SSM in ferromagnetic 2-state spin 

systems.

• SSM in multi-state spin systems:

• difficulty: no SAW-tree;

• implications: WSM vs. SSM in reg. trees, monotonicity of 
WSM/SSM w.r.t degree.

• Apply potential analysis and computationally efficient 
correlation decay to other problems.
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