Fast Sampling Constraint Satisfaction Solutions via the Lovász Local Lemma

International Joint Conference On Theoretical Computer Science (IJTCS) 2021 Frontiers of Algorithmics Workshop (FAW) 2021

Yitong Yin Nanjing University

Constraint Satisfaction Problem

- Variables: $V = \{x_1, x_2, ..., x_n\}$ with finite domains $Q_1, ..., Q_n$
- (local) Constraints: $C = \{c_1, c_2, ..., c_m\}$
 - each $c \in C$ is defined on a subset vbl(c) of variables

• **CSP** formula: $\forall x \in Q_1 \times Q_2 \times Q_2$

 $\Phi(x) =$

• **Example (***k*-**SAT**): Boolean variables $V = \{x_1, x_2, x_3, x_4, x_5\}$

 $k\text{-CNF} \quad \Phi = (x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (x_2 \lor x_3) \land (x_3 \lor x_3)$

 $\Phi = (V, Q, C)$

$$_i \rightarrow \{\texttt{True}, \texttt{False}\}$$

$$\times \cdots \times Q_n$$

$$= \bigwedge_{c \in C} c\left(\boldsymbol{x}_{\mathsf{vbl}(c)} \right)$$

$$(x_1 \lor x_2 \lor x_4) \land (x_3 \lor \neg x_4 \lor \neg x_5)$$
 clause

Lovász Local Lemma (LLL)

- Variables take independent random values X_1, X_2, \ldots, X_n
- Violation Probability: each $c \in C$ is violated with prob. $\leq p$
- **Dependency Degree**: each $c \in C$ shares variables with $\leq D$ other constraints $c' \in C$, i.e. $vbl(c) \cap vbl(c') \neq \emptyset$
- LLL [Erdős, Lovász, 1975]:
 - $epD \leq 1 \implies$ solution exists
- Constructive LLL [Moser, Tardos, 2010]:
 - $epD \leq 1 \implies$ solution can be found very efficiently

Lovász Local Lemma (LLL)

• (k, d)-CNF: $\Phi = (x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_4) \land (x_3 \lor \neg x_4 \lor \neg x_5)$

- Uniform random $X_1, X_2, \dots, X_n \in \{\text{True}, \text{False}\}$
- Violation probability: $p = 2^{-k}$
- Dependency degree: $D \leq dk$
- LLL: $k \ge \log d \ (k \ge \log_2 d + \log_2 k + O(1))$

LLL $epD \le edk2^{-k} \le 1$ Moser-Tados

Sampling & Counting

Input: a CSP formula $\Phi = (V, Q, C)$

Output :

- (sampling) uniform random satisfying solution • (counting) # of satisfying solutions
- μ : uniform distribution over all satisfying solutions of Φ

if $\Phi(x) = \text{True then accept else reject};$

 μ is the distribution of (x | accept)

- **Rejection Sampling**
- generate a uniform random $\forall x \in Q_1 \times Q_2 \times \cdots \times Q_m$;
- **SAT** solutions may be exponentially rare!

Sampling & Counting

Input: a CSP formula $\Phi = (V, Q, C)$

Output :

- exact counting is **#P**-hard

• (sampling) almost uniform random satisfying solution • (counting) an estimation of # of satisfying solutions

Sampling *k*-**SAT Solutions**

Mathematics and Computation [Wigderson 2020]:

"the solution space (and hence the natural Markov chain) is not connected"

 \bullet

Rapid Mixing

Slow (Torpid) Mixing

Sampling almost uniform k-SAT solution under LLL-like condition?

Random walk in solution space (Markov chain Monte Carlo, MCMC):

Sampling *k*-**SAT Solutions**

(k,d)-CNF	Condition	Complexity	Technique
Hermon, Sly, Zhang '16	$\frac{\text{monotone CNF}}{k \gtrsim 2 \log d}$	$(dk)^{O(1)}n\log n$	MCMC
Guo, Jerrum, Liu '17	$s \ge \min(\log dk, k/2)$ $k \gtrsim 2 \log d$	$(dk)^{O(1)}n$	Partial Rejection Sampling
Bezáková <i>et al</i> '16	$k \le 2 \log d - C$	NP-hard	lower bound

[1] Monotone CNF: all variables appear **positively**, e.g. $\Phi = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_4) \land (x_3 \lor x_4 \lor x_5)$ [2] *s*: two dependent clauses share **at least** *s* variables.

Moitra STOC'17 JACM'19	$k \gtrsim 60 \log d$	$n^{O(d^2k^2)}$	Coupling + LP
Feng, Guo, Y., Zhang '20	$k \gtrsim 20 \log d$	$\tilde{O}(d^2k^3n^{1.000001})$	Projected MCMC

Sampling almost uniform SAT solution under LLL-like condition?

LLL cond.: $k \gtrsim \log d$

Main Theorem (for CNF) [Feng, Guo, Y., Zhang '20]

For any sufficiently small ζ

 $k \ge 20 \log d$ +

- Sampling algorithm:
- Counting algorithm:

$$\leq 2^{-20}$$
, any (*k*,*d*)-CNF satisfying
+ $20\log k + 3\log \frac{1}{\zeta}$

draw almost uniform SAT solution in time $\tilde{O}(d^2k^3n^{1+\zeta})$

count # SAT solutions approximately in time $\tilde{O}(d^2k^3n^{2+\zeta})$

Glauber Dynamics

Start from an arbitrary satisfying $x \in \{T, F\}^V$

At each step:

- pick $i \in V$ uniformly at random
- resample $x_i \sim \mu_i(\cdot | \mathbf{x}_{V \setminus \{i\}})$
- μ : uniform distribution over all SAT solutions $x \in \{T, F\}^V$
- $\mu_i(\cdot | x_{V \setminus \{i\}})$: marginal distribution of x_i cond. on current values of all other variables

Glauber Dynamics

Start from an arbitrary satisfying $x \in \{T, F\}^V$

At each step:

- pick $i \in V$ uniformly at random
- resample $x_i \sim \mu_i(\cdot \mid \mathbf{x}_{V \setminus \{i\}})$
- μ : uniform distribution over all SAT solutions $x \in \{T, F\}^V$
- $\mu_i(\cdot | \mathbf{x}_{V \setminus \{i\}})$: marginal distribution of x_i cond. on current values of all other variables

Glauber Dynamics

Start from an arbitrary satisfying $x \in \{T, F\}^V$

At each step:

- pick $i \in V$ uniformly at random
- resample $x_i \sim \mu_i(\cdot | \mathbf{x}_{V \setminus \{i\}})$
- μ : uniform distribution over all SAT solutions $x \in \{T, F\}^V$
- $\mu_i(\cdot | \mathbf{x}_{V \setminus \{i\}})$: marginal distribution of x_i cond. on current values of all other variables

Glauber Dynamics

Start from an arbitrary satisfying $x \in \{T, F\}^V$

At each step:

- pick $i \in V$ uniformly at random
- resample $x_i \sim \mu_i(\cdot \mid \mathbf{x}_{V \setminus \{i\}})$
- μ : uniform distribution over all SAT solutions $x \in \{T, F\}^V$
- (easy to compute by accessing the adjacent variables)
- The Markov chain has stationary distribution μ lacksquare
- If rapidly mixing: $\tau_{mix}(\epsilon) = \max \min$ X_0

• $\mu_i(\cdot | \mathbf{x}_{V \setminus \{i\}})$: marginal distribution of x_i cond. on current values of all other variables conditional independence (spatial Markovian)

$$n\left\{t \mid d_{\mathrm{TV}}(X_t, \mu) \le \epsilon\right\} = \operatorname{poly}\left(n, 1/\epsilon\right)$$

The Solution Space is an Expander!

The Connectivity Barrier

• In the LLL regime (even very far from the critical threshold):

Rapid Mixing

• Idea: projecting onto a lower dimension to improve connectivity

Projected Measure

• μ : uniform distribution over SAT solutions of Φ

- A set $M \subseteq V$ of marked variables
- μ_M : distribution of X_M where $X \sim \mu$
- (Gibbs distribution) over solutions of any (weighted) CSP

• μ_M is a joint distribution: it is no longer a uniform distribution

Our Algorithm (Projected MCMC)

Properly construct a set $M \subseteq V$ of marked variables Start from a uniform random $x \in \{T, F\}^M$ Sampling Repeat for sufficiently many steps: • pick $i \in V$ uniformly at random • resample $x_i \sim \mu_i(\cdot \mid x_{M \setminus \{i\}})$ Draw $x_{V \setminus M}$ according to μ conditional on x_M

There exists an efficiently constructible subset $M \subseteq V$ of variables s.t.:

- The idealized Glauber dynamics for μ_M is rapidly mixing
- It is efficient to draw from $\mu_i(\cdot | x_{M \setminus \{i\}})$ (to implement the idealized Glauber dynamics)
- It is efficient to extend $x_M \sim \mu_M$ to an $x \sim \mu$

Marking/Unmarking Variables

For a (k,d)-formula (corresponds to a k-uniform hypergraph of max-degree d):

- Construct a good $M \subseteq V$ of marked variables such that:
 - each clause contains $\geq 0.11k$ marked variables
 - each clause contains $\geq 0.51k$ unmarked variable

• Constructive LLL (Moser-Tardos):

$$\begin{array}{ll} 0.11k \leq \sum_{i \in \mathsf{vbl}(c)} x_i \leq 0.49k, & \forall c \in C \\ & x_i \in \{0,1\}, & \forall i \in V \end{array}$$

A good *M* can be constructed in time O(dkn) w.h.p.

Our Algorithm (Projected MCMC)

Properly construct a set $M \subseteq V$ of marked variables Start from a uniform random $x \in \{T, F\}^M$ Sampling Repeat for sufficiently many steps: • pick $i \in V$ uniformly at random • resample $x_i \sim \mu_i(\cdot \mid x_{M \setminus \{i\}})$

Draw $x_{V \setminus M}$ according to μ conditional on x_M

There exists an efficiently constructible subset $M \subseteq V$ of variables s.t.:

- The idealized Glauber dynamics for μ_M is rapidly mixing
- It is efficient to draw from $\mu_i(\cdot | x_{M \setminus \{i\}})$ (to implement the idealized Glauber dynamics)
- It is efficient to extend $x_M \sim \mu_M$ to an $x \sim \mu$

Inference in the Solution Space

Sample variable(s) conditional on a partial assignment:

extend $x_M \sim \mu_M$ to $x \sim \mu$

• In general, it is no easier than sampling/counting SAT solutions

Inference in the Solution Space

Sample variable(s) conditioning on a partial assignment:

- connected components

$$k \ge 20 \log d + 20 \log k + 3 \log \frac{1}{\zeta}$$

(on a good $M \subseteq V$)

 x_i is easy to draw

• Clauses satisfied by the partial assignment deconstructs Φ into

• For good $M \subseteq V$, w.h.p. all components are of sizes $O(dk \log n)$

Rejection sampling succeeds w.p. $n^{-\zeta}$

Our Algorithm (Projected MCMC)

Properly construct a set $M \subseteq V$ of marked variables Start from a uniform random $x \in \{T, F\}^M$ Sampling Repeat for sufficiently many steps: • pick $i \in V$ uniformly at random • resample $x_i \sim \mu_i(\cdot \mid x_{M \setminus \{i\}})$ Draw $x_{V \setminus M}$ according to μ conditional on x_M

There exists an efficiently constructible subset $M \subseteq V$ of variables s.t.:

• The idealized Glauber dynamics for μ_M is rapidly mixing

It is efficient to extend $x_M \sim \mu_M$ to an $x \sim \mu$

- It is efficient to draw from $\mu_i(\cdot | x_{M \setminus \{i\}})$ (to implement the idealized Glauber dynamics)

Rapid Mixing of Projected Chain

Start from a uniform random $x \in \{T, F\}^M$ Repeat for sufficiently many steps:

• pick $i \in V$ uniformly at random

• resample
$$x_i \sim \mu_i(\cdot \mid \mathbf{x}_{\mathbf{M} \setminus \{i\}})$$

For a good $M \subseteq V$: assuming $k \ge 20 \log d + 20 \log k + 3 \log \frac{1}{2}$

- Use path coupling [Bubley, Dyer '97] to bound the mixing time.
- Use disagreement coupling [Moitra '17] to bound the discrepancy of path coupling.
- Use local uniformity [Haeupler, Saha, Srinivasan '11] to bound the discrepancy of disagreement coupling.

The idealized Glauber dynamics for the projected measure μ_M :

The idealized Glauber dynamics for μ_M rapidly mixes in $O(n \log n)$ steps

Our Algorithm (Projected MCMC)

Properly construct a set $M \subseteq V$ of marked variables Start from a uniform random $x \in \{T, F\}^M$ Sampling Repeat for sufficiently many steps: • pick $i \in V$ uniformly at random • resample $x_i \sim \mu_i(\cdot \mid x_{M \setminus \{i\}})$ Draw $x_{V \setminus M}$ according to μ conditional on x_M

There exists an efficiently constructible subset $M \subseteq V$ of variables s.t.: The idealized Glauber dynamics for μ_M is rapidly mixing It is efficient to extend $x_M \sim \mu_M$ to an $x \sim \mu$

- It is efficient to draw from $\mu_i(\cdot | x_{M \setminus \{i\}})$ (to implement the idealized Glauber dynamics)

Main Theorem (for CNF) [Feng, Guo, Y., Zhang '20]

For any sufficiently small ζ

 $k \ge 20 \log d$ +

• Sampling algorithm: draw almost uniform SAT solution in time $\tilde{O}(d^2k^3n^{1+\zeta})$

Simulated Annealing

• Counting algorithm:

$$\leq 2^{-20}$$
, any (*k*,*d*)-CNF satisfying
+ $20\log k + 3\log \frac{1}{\zeta}$

[Štefankovič, Vempala, Vigoda '09]

FPRAS for # SAT solutions in time $\tilde{O}(d^2k^3n^{2+\zeta})$

Constraint Satisfaction Problem

- Variables: $V = \{x_1, x_2, ..., x_n\}$ with finite domains $Q_1, ..., Q_n$
- (local) Constraints: $C = \{c_1, c_2, ..., c_m\}$
 - each $c \in C$ is defined on a subset vbl(c) of variables

• **CSP** formula: $\forall x \in Q_1 \times Q_2 \times \cdots \times Q_n$

 $\Phi(x) =$

• **Example (***k*-**SAT**): Boolean variables $V = \{x_1, x_2, x_3, x_4, x_5\}$

 $\Phi = (V, Q, C)$

 $c: \bigotimes Q_i \to \{\text{True}, \text{False}\}$

$$= \bigwedge_{c \in C} c\left(\boldsymbol{x}_{\mathsf{vbl}(c)} \right)$$

 $\Phi = (x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_4) \land (x_3 \lor \neg x_4 \lor \neg x_5)$ clause

CSP with Atomic Constraints (CNF with general domains)

- (atomic) Constraints: $C = \{c_1, c_2, ..., c_m\}$

$$c(\mathbf{x}_{\mathsf{vbl}(c)}) = \begin{cases} \mathsf{False} & \mathbf{x}_{\mathsf{vbl}(c)} = \\ \mathsf{True} & \mathsf{otherwidd} \end{cases}$$

$$x_{\mathsf{vb}(c)} \neq c$$
$$x_i \in \zeta$$

- **CSP formula**: $\forall x \in Q_1 \times Q_2$
- **Sampling**: draw almost uniform SAT solution x

• Variables: $V = \{x_1, x_2, ..., x_n\}$ with finite domains $Q_1, ..., Q_n$

• each $c \in C$ forbids an assignment on a subset vbl(c) of variables

= a forbidden pattern $\sigma^c \in \bigotimes_{i \in \mathsf{vbl}(c)} Q_i$

ise

 $\sigma^{c}, \qquad \forall c \in C$ $Q_{i}, \qquad \forall i \in V$

$$\times \cdots \times Q_n, \quad \Phi(\mathbf{x}) = \bigwedge_{c \in C} c\left(\mathbf{x}_{\mathsf{vbl}(c)}\right)$$

The Connectivity Barrier

• In the LLL regime (even very far from the critical threshold):

Rapid Mixing

• In general, there is **no** good $M \subseteq V$ such that μ_M is well-connected

[Feng, He, **Y.** '20]

- Variables: $V = \{x_1, x_2, ..., x_n\}$ with domains $Q_1, ..., Q_n$
- Compression: $h_i: Q_i \to \Sigma_i$ for every variable x_i with $|Q_i| \ge |\Sigma_i|$ • For Boolean variables $Q_i = \{T, F\}$, • marked variable: $h_i: Q_i \to \Sigma_i$ with $|\Sigma_i| = 2$ and h_i is identity mapping • unmarked variable: $h_i : Q_i \to \Sigma_i$ with $|\Sigma_i| = 1$

- A good compression: independent random $(X_1, ..., X_n) \in Q_1 \times \cdots \times Q_n$

$$\forall c \in C: \quad 0.11 \sum_{i \in \mathsf{vbl}(c)} H(X_i) \leq 0.11 \sum_{i \in \mathsf{vbl$$

- $\leq \sum H(h_i(X_i)) \leq 0.49 \sum H(X_i)$ $i \in vbl(c)$ $i \in \mathsf{vbl}(c)$
- $H(\cdot)$: Shannon entropy

 $x \sim \mu$

[Feng, He, Y. '20]

- Variables: $V = \{x_1, x_2, ..., x_n\}$ with domains $Q_1, ..., Q_n$

$$\forall c \in C: \quad 0.11 \sum_{i \in \mathsf{vbl}(c)} H(X_i) \le \sum_{i \in \mathsf{vbl}(c)} H(h_i(X_i)) \le 0.49 \sum_{i \in \mathsf{vbl}(c)} H(X_i)$$

original space of SAT solutions $\in Q_1 \times \cdots \times Q_n$

• Compression: $h_i: Q_i \to \Sigma_i$ for every variable x_i with $|\Sigma_i| \leq |Q_i|$ • A good compression: independent random $(X_1, \ldots, X_n) \in Q_1 \times \cdots \times Q_n$

Mapped to a $y = h((x)) \sim \nu$ Well connected!

[Feng, He, **Y.** '20]

- Variables: $V = \{x_1, x_2, ..., x_n\}$ with domains $Q_1, ..., Q_n$
- Compression: $h_i: Q_i \to \Sigma_i$ for every variable x_i with $|\Sigma_i| \leq |Q_i|$
- A good compression: independent random $(X_1, \ldots, X_n) \in Q_1 \times \cdots \times Q_n$

$$\forall c \in C: \quad 0.11 \sum_{i \in \mathsf{vbl}(c)} H(X_i) \le \sum_{i \in \mathsf{vbl}(c)} H(h_i(X_i)) \le 0.49 \sum_{i \in \mathsf{vbl}(c)} H(X_i)$$

Easy to recover $\boldsymbol{x} \sim \boldsymbol{\mu}$ given $\boldsymbol{h}(\boldsymbol{x}) = \boldsymbol{y}$

[Feng, He, Y. '20]

- Variables: $V = \{x_1, x_2, ..., x_n\}$ with domains $Q_1, ..., Q_n$
- Compression: $h_i: Q_i \to \Sigma_i$ for every variable x_i with $|\Sigma_i| \leq |Q_i|$ • A good compression: independent random $(X_1, \ldots, X_n) \in Q_1 \times \cdots \times Q_n$

$$\forall c \in C: \quad 0.11 \sum_{i \in \mathsf{vbl}(c)} H(X_i) \leq \sum_{i \in \mathsf{vbl}(c)} H(h_i(X_i)) \leq 0.49 \sum_{i \in \mathsf{vbl}(c)} H(X_i)$$

original space of SAT solutions $\in Q_1 \times \cdots \times Q_n$

Our Algorithm (State Compression)

- pick $i \in V$ uniformly at random
- resample $y_i \sim \nu_i(\cdot | \mathbf{y}_{V \setminus \{i\}})$

$$\forall c \in C: \quad 0.11 \sum_{i \in \mathsf{vbl}(c)} H(X_i) \le \sum_{i \in \mathsf{vbl}(c)} H(h_i(X_i)) \le 0.49 \sum_{i \in \mathsf{vbl}(c)} H(X_i)$$

- Construct a good compression h (using Moser-Tados)
 - Start from a random y in $\Sigma_1 \times \cdots \times \Sigma_n$
 - Repeat for sufficiently many steps:

Draw x according to μ conditional on h(x) = y

• A good compression: independent random $(X_1, \ldots, X_n) \in Q_1 \times \cdots \times Q_n$

Lovász Local Lemma (LLL)

- Variables take independent random values X_1, X_2, \ldots, X_n
- Violation Probability: each $c \in C$ is violated with prob. $\leq p$
- **Dependency Degree**: each $c \in C$ shares variables with $\leq D$ other constraints
- **LLL**: $epD \leq 1 \implies$ solution exists
- Sampling lower bound [Bezáková et al '16]:

 $pD^2 \leq 1$ is necessary for sampling

Main Theorem (for Atomic CSP) [Feng, He, **Y.** '20]

- Sampling algorithm: draw almost uniform SAT solution in time $\tilde{O}(D^3n^{1.000001})$
- Counting algorithm: count # SAT solutions approximately in time $\tilde{O}(D^3n^{2.000001})$

For atomic CSP with violation prob. p and dependency deg. D $pD^{350} \leq 1$

Follow-Ups and Related Works

- Fast sampling: $O(n^{1.000001})$ time
 - [Jain, Pham, Vuong '21]: use information percolation to bound mixing,

- [He, Sun, Wu '21]: use CFTP to get perfect sampler, unified analysis, $pD^{5.714} \leq 1$ for atomic CSP
- Deterministic approximate counting: $n^{O(\text{poly}(D))}$ time
 - [Guo, Liao, Lu, Zhang '18]: adaptive marking/unmarking,

• [Jain, Pham, Vuong '20]: adaptive marking/unmarking, refine Moitra,

 $pD^{7.043} \leq 1$ for atomic CSP

 $pD^{16} \leq 1$ for hypergraph coloring

 $pD^7 \lesssim 1$ for general CSP

Open Problems

- Fast (near-linear time) sampling algorithm for general (nonatomic) CSP solutions.
- Truly polynomial-time (n^c where c is universal constant) deterministic approximate counting for CSP solutions.
- The sharp LLL condition for sampling CSP solutions:
 - $k \gtrsim 2 \log d$ for (k, d)-CNF?
 - For general CSP? $pD^{350} \leq 1$
- Sampling LLL in non-variable framework:
 - Bad events A_1, \ldots, A_m in probability space Ω
 - Draw a sample $s \in \Omega$ avoiding all bad events.

- [Moitra '17]: Approximate counting, the Lovász local lemma, and inference in lacksquaregraphical models. STOC'17, JACM'19.
- [Guo, Liao, Lu, Zhang '18]: Counting hypergraph colorings in the local lemma regime. STOC'18, SICOMP'19.
- [Feng, Guo, Y., Zhang '20]: Fast sampling and counting k-SAT solutions in the local lemma regime. STOC'20.
- [Feng, He, Y. '21]: Sampling constraint satisfaction solutions in the local lemma regime. STOC'21.
- [Jain, Pham, Vuong '20]: Towards the sampling Lovász local lemma. FOCS'21. lacksquare
- [Jain, Pham, Vuong '21]: On the sampling Lovász local lemma for atomic constraint satisfaction problems. arXiv:2102.08342.
- [He, Sun, Wu '21]: Perfect Sampling for (Atomic) Lovász Local Lemma. arXiv:2107.03932.

