
Distributed Algorithms
for

MCMC Sampling

Yitong Yin
Nanjing University

Shonan Meeting No. 162: Distributed Graph Algorithms

Outline
• Distributed Sampling Problem

• Gibbs Distribution (distribution defined by local constraints)

• Algorithmic Ideas

• Local Metropolis Algorithm

• LOCAL Jerrum-Valiant-Vazirani

• Local Rejection Sampling

• Distributed Simulation of Metropolis (with ideal parallelism)

MCMC

MCMC

MCMC: Markov chain Monte Carlo

Single-Site Markov Chain

vv propose a random color c∈[q];

change v’s color to c if it’s proper;

at each step:

Metropolis Algorithm
(q-coloring)

for a uniform random vertex v

Start from an arbitrary coloring ∈[q]V

vv propose a random color c∈[q];

change v’s color to c if it’s proper;

Metropolis Algorithm
(q-coloring)

Single-Site Markov Chain in 1960s
Each vertex holds an independent rate-1 Poisson clock.

When the clock at v rings:

continuous time T discrete time
θ(nT) sequential steps

ring!

Distributed Simulation of
Continuous-Time Process

Goal: Give a distributed algorithm that perfect simulates
the time T continuous Markov chain.

(Have the same behavior given the same random bits.)

do NOT allow adjacent vertices update
their colors in the same round:

O(ΔT) rounds

[Feng, Hayes, Y. ’19]:

O(T + log n) rounds w.h.p.
(under some mild condition)

• locally generate all update times
and proposed colors ;

• send the initial color and all to all neighbors;

0 < t1 < t2 < ⋯ < tMv
< T

c1, c2, …, cMv
∈ [q]

(ti, ci)1≤i≤Mv

Phase I:

for each vertex :v ∈ V

Phase II:

• For do:
once having received enough information:
resolve the i-th update of v and send the result
(“Accept / Reject”) to all neighbors;

i = 1,2,…, Mv

2-Phase Paradigm

for each vertex :v ∈ V

• For do:
once having received enough information:
resolve the i-th update of v and send the result
(“Accept / Reject”) to all neighbors;

i = 1,2,…, Mv

v

0
t1
t2
t3
t4
t5
t6
t7

u

curr-color =

“enough info” to resolve
the i-th update at v: (tv

i , cv
i)

✓
✗ all adjacent updates before "

have been resolved and received by v
tv
i

#rounds > L

∃ a path v1, v2, …, vL

T > tv1
i1

> tv2
i2

> ⋯ > tvL
iL

> 0
which occurs w.p. <(eT/L)L

#rounds = O(∆T + log n) w.h.p.

v

0
t1
t2
t3
t4
t5
t6
t7

u

curr-color =
✓
✗

Resolve Update In Advance

t

“enough info” to resolve the i-th update at v: (t, c)

} Su(t)

If : “Accept!” c ∉ ⋃
u∼v

Su(t)

: set of possible colors
of u at time t

c =

v

0
t1
t2
t3
t4
t5
t6
t7

u

curr-color =
✓
✓

Resolve Update In Advance

}

If :
“Reject!”

∃u ∼ v s.t. Su(t) = {c}

If : “Accept!” c ∉ ⋃
u∼v

Su(t)

“enough info” to resolve the i-th update at v: (t, c)

Su(t) : set of possible colors
of u at time t

t

c =

Construct " for every neighbor u of v;
upon :

send “Accept!” to all neighbors and i++;
upon :

send “Reject!” to all neighbors and i++;
upon receiving “Accept!” or “Reject!” from neighbor u:

update " accordingly;

Su(t)
c ∉ ⋃

u∼v

Su(t)

∃u ∼ v s.t. Su(t) = {c}

Su(t)

to resolve the i-th update at v: (t, c)

v

0
t1
t2
t3
t4
t5
t6
t7

u

curr-color =
✓
✗

t } Su(t) : current set of
possible colors of

u at time t

Construct " for every neighbor u of v;
upon :

send “Accept!” to all neighbors and i++;
upon :

send “Reject!” to all neighbors and i++;
upon receiving “Accept!” or “Reject!” from neighbor u:

update " accordingly;

Su(t)
c ∉ ⋃

u∼v

Su(t)

∃u ∼ v s.t. Su(t) = {c}

Su(t)

to resolve the i-th update at v: (t, c)

#round > L ∃ a path : v1, v2, …, vL

T > tv1
i1

> tv2
i2

> ⋯ > tvL
iL

> 0

along the path: “good events” do not happen
{

#paths ≤ ∆L

q>C∆
for constant C>0 #rounds = O(T + log n) w.h.p.

Pr < O (T
qL)

L

The Metropolis Algorithm

let b=Xv and propose a random c∈[q];

change Xv to c with prob. ;f v
b,c(XN(v))

Start from an arbitrary X∈[q]V

Metropolis filter:

f v
b,c : [q]N(v) → [0,1]

b ∈ [q]: current color of v
c ∈ [q]: proposed color of v

Each vertex holds an independent rate-1 poisson clock.

When the clock at v rings:
vv

ring!

• locally generate all update times
and proposed colors ;

• send the initial color and all to all neighbors;

0 < t1 < t2 < ⋯ < tMv
< T

c1, c2, …, cMv
∈ [q]

(ti, ci)1≤i≤Mv

Phase I:

for each vertex :v ∈ V

Phase II:

• For do:
once having received enough information:
resolve the i-th update of v and send the result
(“Accept / Reject”) to all neighbors;

i = 1,2,…, Mv

2-Phase Paradigm

• For do:
once having received enough information:
resolve the i-th update of v and send the result
(“Accept / Reject”) to all neighbors;

i = 1,2,…, Mv
to execute the
Metropoli filter
^

Su(t) : set of possible colors
of u at time t

∀τ ∈ ⨂
u∼v

Su(t)

 gives a biased coinf v
b,c(τ)

v

0
t1
t2
t3
t4
t5
t6
t7

u

curr-color =
✓
✗

t }

curr-color = b
proposal = c

Idea: Couple all these coins!

to resolve the i-th update at v: (t, c)

Construct " for every neighbor u of v;

let b be v’s current color and:

 ;

 ;

sample a uniform random ;

upon :

send “Accept!” to all neighbors and i++;

upon :

send “Reject!” to all neighbors and i++;

upon receiving “Accept!” or “Reject!” from neighbor u:

update " accordingly and recalculate and ;

Su(t)

P𝖠𝖼𝖼 ≜ min
τ∈⨁u∼v Su(t)

fb,c(τ)

P𝖱𝖾𝗃 ≜ 1 − max
τ∈⨁u∼v Su(t)

fb,c(τ)

β ∈ [0,1]
β ≤ P𝖠𝖼𝖼

β ≥ 1 − P𝖱𝖾𝗃

Su(t) P𝖠𝖼𝖼 P𝖱𝖾𝗃

to resolve the i-th update at v: (t, c)

Universal Distributed Simulation
of Metropolis Algorithm

let b=Xv and propose a random c∈[q];

change Xv to c with prob. ;f v
b,c(XN(v))

Metropolis Algorithm:
continuous-time T

∀(u, v) ∈ E, ∀a, a′�, b ∈ [q] : 𝔼c[δu,a,a′� f v
b,c] <

C
Δ

δu,a,a′� f v
b,c ≜ max

σ, τ 𝖽𝗂𝖿𝖿𝖾𝗋 𝗈𝗇𝗅, 𝖺𝗍 u
σu = a, τu = b

| f v
b,c(σ) − f v

b,c(τ) |where

∃ constant C>0:Lipschitz condition:

#rounds = O(T + log n) w.h.p.

model Lipschitz condition Necessary condition
 for mixing

q-coloring
∃ constant C>0

q>C∆ q ≥ ∆+2

Ising model with
temperature β

∃ constant C>0

hardcore model
with fugacity λ

∃ constant C>0

1 − e−2|β| <
C
Δ

1 − e−2|β| <
2
Δ

λ <
C
Δ

λ <
(Δ − 1)Δ−1

(Δ − 2)Δ
≈

e
Δ − 2

Summary

• Universal distributed perfect simulation of
Metropolis algorithms, with ideal parallelism under
mild Lipschitz condition for Metropolis filter.

• Open problem: distributed simulation of
general class of single-site Markov chains.

Outline
• Distributed Sampling Problem

• Gibbs Distribution (distribution defined by local constraints)

• Algorithmic Ideas

• Local Metropolis Algorithm [Feng, Sun, Y., PODC’17]

• LOCAL Jerrum-Valiant-Vazirani [Feng, Y., PODC’18]

• Local Rejection Sampling [Feng, Vishnoi, Y., STOC’19]

• Distributed Simulation of Metropolis

[Feng, Hayes, Y., ’19]

Local Computation

• CSPs with local constraints.

• Construct a feasible solution:
vertex/edge coloring, Lovász local lemma

• Find local optimum: MIS, MM

• Approximate global optimum:
maximum matching, minimum vertex
cover, minimum dominating set

Locally Checkable Labeling (LCL)
problems:

Quest: “Find a solution to the locally defined problem.”

network G(V,E)

“What can be sampled locally?”

network G(V,E)

• CSP with local constraints.

• Sample a uniform random
solution.

• Distribution µ (over solutions)
described by local rules.

• uniform LCL solution

• Ising model / RBM /
tensor network…

Quest: “Generate a sample from the locally defined distribution.”

Markov Random Fields
network G(V,E):• Each vertex corresponds to a

variable with finite domain [q].

• Each edge (u,v)∈E imposes a
binary constraint: Au,v

Xv∈[q]
u v

~X 2 [q]V follows µ

Au,v : [q]2 →{0,1}

∀σ ∈ [q]V :

μ(σ) ∝ ∏
(u,v)∈E

Au,v(σu, σv)

• Gibbs distribution µ :

• local conflict colorings:
[Fraigniaud, Heinrich, Kosowski ’16]

Markov Random Fields
network G(V,E):

Xv∈[q]
u v

~X 2 [q]V follows µ

• Gibbs distribution µ :

• vertex q-coloring:

• independent set:

μ(σ) ∝ ∏
(u,v)∈E

Au,v(σu, σv)∀σ ∈ [q]V :

• local conflict colorings:
[Fraigniaud, Heinrich, Kosowski ’16]

Au,v
0

0
⋱

0

Au,v =
1

1

Au,v = [1 1
1 0]

Au,v ∈ {0,1}q×q

Markov Random Fields
network G(V,E):• Each vertex corresponds to a

variable with finite domain [q].

• Each edge (u,v)∈E imposes a
binary constraint: Au,v

Xv∈[q]
u v

~X 2 [q]V follows µ

Au,v : [q]2 →{0,1}

∀σ ∈ [q]V :

μ(σ) ∝ ∏
(u,v)∈E

Au,v(σu, σv)

• Gibbs distribution µ :

• local conflict colorings:
[Fraigniaud, Heinrich, Kosowski ’16]

[]
“soft” constraint

Distributed Sampling

network G(V,E)

• Instance: a Gibbs distribution µ

• Output: random Y ∈ [q]V

• approx. sampling:

• perfect sampling:

dTV(Y, μ) ≤ ϵ

Y ∼ μ

[Kandasamy, et al, AISTAT'18]
[Dasklakis, et al, NIPS'18]
[De Sa, et al, ICML’16 best paper]
[De Sa, et al, NIPS’15]
[Ahmed, et al, WSDM’12]

[Gonzalez, et al, AISTAT’11]
[Yan, et al, NIPS’09]
[Smyth, et al, NIPS’09]
[Doshi-Velez, et al, NIPS’09]
[Newman, et al, NIPS’08]

Empirical studies in machine learning:

Easy regime Hard regime

Distributed Sampling

network G(V,E)

• Instance: a Gibbs distribution µ

• Output: random Y ∈ [q]V

• approx. sampling:

• perfect sampling:

dTV(Y, μ) ≤ ϵ

Y ∼ μ

[Feng, Sun, Y. ’17]:

• O(Δ log n)-round is easy

• O(log n)-round is possible

• Ω(log n)-round is necessary

• can be Ω(Diam)-hard
when Diam = nΩ(1)

Phase Transition

• Dobrushin-Shlosman condition

• Uniqueness condition (spatial mixing)

• …

• (Δ-1)-coloring on triangle-free graph

• independent set when Δ=6 or higher

G

v r B dTV(μv(⋅ ∣ σB), μv(⋅ ∣ τB))

≤ exp(−Ω(r))

∀σB, τB ∈ [q]B :
Corerelation decay:

Hard regime: there is long-range correlation

Easy regime: various forms of correlation decays

Ω(Diam)-hard}

Outline
• Distributed Sampling Problem

• Gibbs Distribution (distribution defined by local constraints)

• Algorithmic Ideas

• Local Metropolis Algorithm [Feng, Sun, Y., PODC’17]

• LOCAL Jerrum-Valiant-Vazirani [Feng, Y., PODC’18]

• Local Rejection Sampling [Feng, Vishnoi, Y., STOC’19]

• Distributed Simulation of Metropolis

Single-Site Markov Chain
G(V,E):

pick a uniform random vertex v;

propose a random color c∈[q];

change X(v) to c if it’s proper;

starting from an arbitrary X ∈ [q]V

at each step :
Au,vvv

Metropolis for q-coloring:

pick a uniform random vertex v;

propose to change X(v) to a random color c∈[q];

accept the change with probability min {1,
μ(X′�)
μ(X) } = min 1, ∏

u∈N(v)

Au,v(X(u), c)
Au,v(X(u), X(v))

Metropolis for general MRF:

[Bubley, Dyer, 97]: path-coupling works mixing in O(n log n) steps

The Local Metropolis Algorithm

starting from an arbitrary X ∈ [q]V, at each step:

each vertex v∈V independently proposes a random cv∈[q];

each edge (u,v)∈E passes its test independently with probability:

;

each vertex v∈V accepts to change to its proposed value cv
if all incident edges pass their test;

u v w
Xu Xv Xwcurrent:

proposals: cu cv cw

• converge to the correct Gibbs distribution µ. [Feng, Sun, Y. ’17]

Au,v(Xu, cv) ⋅ Au,v(cu, Xv) ⋅ Au,v(cu, cv)

The Local Metropolis Algorithm

For q-coloring, at each step:

each vertex v∈V independently proposes a random color cv∈[q];
each vertex v∈V accepts to change to its proposed color cv if:

;

u v w
Xu Xv Xwcurrent:

proposals: cu cv cw

• Converges in O(log n) rounds when:

Xu ≠ cv ∧ cu ≠ Xv ∧ cu ≠ cv

[Feng, Sun, Y. ’17], [Fischer, Ghaffari ’18], [Feng, Hayes, Yin ’18]:

path-coupling works for
(sequential) Metropolis chain

Dobrushin-Shlosman condition

(2+δ)Δ-coloring

LOCAL Jerrum-Valiant-Vazirani
[Jerrum, Valiant, Vazirani ’86]: (for self-reducible problems)

approximate
counting

perfect
sampling

Poly-time TM

LOCAL JVV [Feng, Y. ’18]: (for self-reducible problems)

correlation
decay

LOCAL
approx.

inference

SLOCAL
perfect

sampling

LOCAL
perfect

sampling

unbounded
msg/comput.

local JVV
reduction

network
decomposition

• (2+δ)Δ-coloring; 1.733Δ-coloring on triangle-free graph;

• Conjecture: (1+δ)Δ-coloring

“strong
spatial mixing” O(log3 n)

rounds

Local Rejection Sampling
μ(σ) ∝ ∏

e=(u,v)∈E

Au(σu, σv)∀σ ∈ [q]V : Ae : [q]2 → [0,1]where

each v ∈ V ind. samples a random σv∈[q];
each e=(u,v) ∈ E samples Fe ∈{0,1} ind. with Pr[Fe = 0] = Ae(σu,σv);
while ∃e∈ E s.t. Fe =1 do:

resample σv for all ;

for each e=(u,v) ∈ E that e∩R ≠ ∅, resample Fe ∈{0,1} ind. as:

each v ∈ V returns σv;

v ∈ R ≜ ⋃
e∈E:Fe=1

e

Pr[Fe = 0] =
Ae(σu, σv) u, v ∈ R (internal edge)

Ae(σu, σv)

Ae(σu, σ𝗈𝗅𝖽
v)

min Ae(σu, ⋅) u ∉ R, v ∈ R (boundary edge)

a Moser-Tardos style algorithm [Feng, Vishnoi, Y. ’19]:

Local Rejection Sampling

a Moser-Tardos style algorithm:

[Feng, Vishnoi, Y. ’19], [Feng, Guo, Y. ’19]

• perfect sampling, Las Vegas

• parallel/distributed (CONGEST)

• O(log n)-round when converge

• works for dynamic input

• require stronger types of correlation decay:

• O(Δ2)-coloring (for a variant of the algorithm)

Features/Limitations Fast regimes

Local
Metropolis

• synchronous parallel
Markov chain

• Monte Carlo sampling

• CONGEST model

• path-coupling works for
sequential process
(Dobrushin-Shlosman cond.)

• (2+δ)Δ-coloring

LOCAL
JVV

• perfect sampling

• abuses LOCAL model

• O(log3 n) rounds

• needs only necessary
correlation decay

• conjecture:
(1+δ)Δ-coloring

Local
Rejection
Sampling

• Moser-Tardos style

• Las Vegas, perfect sampling

• CONGEST model

• works on dynamic input

• requires faster
correlation decay

• O(Δ2)-coloring

Features/Limitations Fast regimes

Universal
Simulation

of
Metropolis

• Monte Carlo sampling

• CONGEST model

• as long as sequential
Metropolis algorithm has
O(n log n) mixing time

LOCAL
JVV

• perfect sampling

• abuses LOCAL model

• O(log3 n) rounds

• needs only necessary
correlation decay

• conjecture:
(1+δ)Δ-coloring

Local
Rejection
Sampling

• Moser-Tardos style

• Las Vegas, perfect sampling

• CONGEST model

• works on dynamic input

• requires faster
correlation decay

• O(Δ2)-coloring

Thank you!
Feng, Guo, Y. Perfect sampling from spatial mixing. arXiv:1907.06033.

Feng, Hayes, Y. Distributed Metropolis Sampler with Optimal Parallelism. arxiv:1904.00943

Feng, Hayes, Y. Distributed Sampling Almost-Uniform Graph Coloring with Fewer Colors.
arxiv: 1802.06953.

Feng, Vishnoi, Y. Dynamic Sampling from graphical models. STOC’19. arxiv: 1807.06481.

Feng, Y. On local distributed sampling and counting. PODC’18. arxiv: 1802.06686.

Feng, Sun, Y. What can be sampled locally? PODC’17. arxiv: 1702.00142.

