

Distributed Algorithms for MCMC Sampling

Yitong Yin Nanjing University

Shonan Meeting No. 162: Distributed Graph Algorithms

Outline

- Distributed Sampling Problem
 - Gibbs Distribution (distribution defined by local constraints)
- Algorithmic Ideas
 Local Metropolis Algorithm
 - LOCAL Jerrum-Valiant-Vazirani
 - Local Rejection Sampling

Distributed Simulation of Metropolis (with ideal parallelism)

MCMC: Markov chain Monte Carlo

Single-Site Markov Chain

Start from an arbitrary coloring $\in [q]^V$ at each step:

for a uniform random vertex v

propose a random color $c \in [q]$;

change v's color to c if it's proper;

Metropolis Algorithm (q-coloring)

Single-Site Markov Chain in 1960s

Each vertex holds an independent rate-1 Poisson clock.

When the clock at v rings:

propose a random color $c \in [q]$;

change v's color to c if it's proper;

Metropolis Algorithm (q-coloring)

continuous time T

discrete time $\theta(nT)$ sequential steps

Distributed Simulation of Continuous-Time Process

Goal: Give a distributed algorithm that perfect simulates the time *T* continuous Markov chain.

(Have the same behavior given the same random bits.)

do NOT allow adjacent vertices update their colors in the same round:

 $O(\Delta T)$ rounds

[Feng, Hayes, Y. '19]:

 $O(T + \log n)$ rounds w.h.p. (under some mild condition)

2-Phase Paradigm

for each vertex $v \in V$:

Phase I:

- locally generate all update times $0 < t_1 < t_2 < \cdots < t_{M_v} < T$ and proposed colors $c_1, c_2, \dots, c_{M_v} \in [q]$;
- send the initial color and all $(t_i, c_i)_{1 \le i \le M_v}$ to all neighbors;

Phase II:

• For $i = 1, 2, ..., M_v$ do:

once having received enough information: resolve the *i*-th update of *v* and send the result ("Accept / Reject") to all neighbors; for each vertex $v \in V$:

• For
$$i = 1, 2, ..., M_v$$
 do:

once having received enough information: resolve the *i*-th update of *v* and send the result ("Accept / Reject") to all neighbors;

Resolve Update In Advance

"enough info" to resolve the *i*-th update at v: (t, c)

Resolve Update In Advance

"enough info" to resolve the *i*-th update at v: (t, c)

If
$$c \notin \bigcup_{u \sim v} S_u(t)$$
 : "Accept!"

: set of possible colors of *u* at time *t*

If
$$\exists u \sim v$$
 s.t. $S_u(t) = \{c\}$:
"Reject!"

to resolve the *i*-th update at *v*: (t, c)

Construct $S_u(t)$ for every neighbor u of v; upon $c \notin \bigcup_{u \sim v} S_u(t)$: send "Accept!" to all neighbors and i++; upon $\exists u \sim v$ s.t. $S_u(t) = \{c\}$: send "Reject!" to all neighbors and i++; upon receiving "Accept!" or "Reject!" from neighbor u: update $S_u(t)$ accordingly;

to resolve the *i*-th update at *v*: (t, c)

The Metropolis Algorithm

Each vertex holds an independent rate-1 poisson clock.

Start from an arbitrary $X \in [q]^V$

When the clock at v rings:

let $b=X_v$ and propose a random $c\in[q]$;

change X_v to c with prob. $f_{b,c}^v(X_{N(v)})$;

Metropolis filter:

 $f_{b,c}^v:[q]^{N(v)}\to [0,1]$

 $b \in [q]$: current color of v $c \in [q]$: proposed color of v

2-Phase Paradigm

for each vertex $v \in V$:

Phase I:

- locally generate all update times $0 < t_1 < t_2 < \cdots < t_{M_v} < T$ and proposed colors $c_1, c_2, \dots, c_{M_v} \in [q]$;
- send the initial color and all $(t_i, c_i)_{1 \le i \le M_v}$ to all neighbors;

Phase II:

• For $i = 1, 2, ..., M_v$ do:

once having received enough information: resolve the *i*-th update of *v* and send the result ("Accept / Reject") to all neighbors; to resolve the *i*-th update at *v*: (t, c)• For $i = 1, 2, ..., M_v$ do: once having received enough information; resolve the *i*-th update of *v* and send the result ("Accept / Reject") to all neighbors;

to resolve the *i*-th update at *v*: (t, c)

Construct $S_u(t)$ for every neighbor u of v; let b be v's current color and: $P_{\mathsf{Acc}} \triangleq \min_{\tau \in \bigoplus_{u \sim v} S_u(t)} f_{b,c}(\tau);$ $P_{\mathsf{Rej}} \triangleq 1 - \max_{\tau \in \bigoplus_{u \neq v} S_u(t)} f_{b,c}(\tau);$ sample a uniform random $\beta \in [0,1]$; upon $\beta \leq P_{Acc}$: send "Accept!" to all neighbors and i++; upon $\beta \geq 1 - P_{\text{Rei}}$: send "Reject!" to all neighbors and i++; **upon** receiving "Accept!" or "Reject!" from neighbor *u*: update $S_u(t)$ accordingly and recalculate P_{Acc} and P_{Rei} ;

Universal Distributed Simulation of Metropolis Algorithm

Metropolis Algorithm: continuous-time T

let $b=X_v$ and propose a random $c\in[q]$;

change X_v to c with prob. $f_{b,c}^v(X_{N(v)})$;

$$\begin{array}{lll} \underline{\text{Lipschitz condition:}} & \exists \text{ constant } C > 0 \text{:} \\ \forall (u, v) \in E, \forall a, a', b \in [q] \text{:} & \mathbb{E}_c[\delta_{u, a, a'} f_{b, c}^v] < \frac{C}{\Delta} \\ & \text{where} & \delta_{u, a, a'} f_{b, c}^v \triangleq \max_{\sigma, \tau \text{ differ onl, at } u \atop \sigma_u = a, \tau_u = b} |f_{b, c}^v(\sigma) - f_{b, c}^v(\tau)| \end{array}$$

#rounds = O($T + \log n$) w.h.p.

model	Lipschitz condition	Necessary condition for mixing
<i>q</i> -coloring	$\exists \text{ constant } C > 0$ $q > C\Delta$	$q \ge \Delta + 2$
Ising model with temperature β	$\exists \text{ constant } C > 0$ $1 - e^{-2 \beta } < \frac{C}{\Delta}$	$1 - \mathrm{e}^{-2 \beta } < \frac{2}{\Delta}$
hardcore model with fugacity λ	$\exists \text{ constant } C > 0$ $\lambda < \frac{C}{\Delta}$	$\lambda < \frac{(\Delta - 1)^{\Delta - 1}}{(\Delta - 2)^{\Delta}} \approx \frac{e}{\Delta - 2}$

Summary

- Universal distributed perfect simulation of Metropolis algorithms, with ideal parallelism under mild Lipschitz condition for Metropolis filter.
- **Open problem**: distributed simulation of general class of single-site Markov chains.

Outline

- Distributed Sampling Problem
 - Gibbs Distribution (distribution defined by local constraints)
- Algorithmic Ideas [Feng, Hayes, Y., '19]
 - Local Metropolis Algorithm [Feng, Sun, Y., PODC'17]
 - LOCAL Jerrum-Valiant-Vazirani [Feng, Y., PODC'18]
 - Local Rejection Sampling [Feng, Vishnoi, Y., STOC'19]
- Distributed Simulation of Metropolis

Local Computation

Locally Checkable Labeling (LCL) problems:

- CSPs with local constraints.
- Construct a feasible solution: vertex/edge coloring, Lovász local lemma
 - Find local optimum: MIS, MM
 - Approximate global optimum: maximum matching, minimum vertex cover, minimum dominating set

Quest: "Find a solution to the locally defined problem."

"What can be sampled locally?"

- CSP with local constraints.
- Sample a uniform random solution.
- Distribution μ (over solutions) described by local rules.
 - uniform LCL solution
 - Ising model / RBM / tensor network...

Quest: "Generate a sample from the locally defined distribution."

Markov Random Fields

- Each vertex corresponds to a variable with finite domain [q].
- Each edge (u,v)∈E imposes a binary constraint:

 $A_{u,v}: [q]^2 \rightarrow \{0,1\}$

- Gibbs distribution μ : $\forall \sigma \in [q]^V$: $\mu(\sigma) \propto \prod_{(u,v)\in E} A_{u,v}(\sigma_u, \sigma_v)$
- local conflict colorings: [Fraigniaud, Heinrich, Kosowski '16]

network G(V,E):

Markov Random Fields

network G(V,E):

• local conflict colorings: $A_{u,v} \in \{0,1\}^{q \times q}$ [Fraigniaud, Heinrich, Kosowski '16]

Markov Random Fields

- Each vertex corresponds to a variable with finite domain [q].
- Each edge (u,v)∈E imposes a binary constraint:

$$A_{u,v} : [q]^2 \rightarrow [0,1]$$

"soft" constraint

• Gibbs distribution μ :

$$\forall \sigma \in [q]^V :$$
$$\mu(\sigma) \propto \prod_{(u,v) \in E} A_{u,v}(\sigma_u, \sigma_v)$$

 local conflict colorings: [Fraigniaud, Heinrich, Kosowski '16] network G(V,E):

Distributed Sampling

- Instance: a Gibbs distribution μ
- Output: random $Y \in [q]^V$
 - approx. sampling:

 $d_{\mathrm{TV}}(\mathbf{Y}, \mu) \leq \epsilon$

• perfect sampling:

 $Y \sim \mu$

Empirical studies in machine learning:

[Kandasamy, et al, AISTAT'18] [Dasklakis, et al, NIPS'18] [De Sa, et al, ICML'16 best paper] [De Sa, et al, NIPS'15] [Ahmed, et al, WSDM'12] network G(V,E)

[Gonzalez, et al, AISTAT'11] [Yan, et al, NIPS'09] [Smyth, et al, NIPS'09] [Doshi-Velez, et al, NIPS'09] [Newman, et al, NIPS'08]

Distributed Sampling

- Instance: a Gibbs distribution μ
- Output: random $Y \in [q]^V$
 - approx. sampling:

 $d_{\mathrm{TV}}(\boldsymbol{Y},\boldsymbol{\mu}) \leq \epsilon$

• perfect sampling:

 $Y \sim \mu$

network G(V,E)

[Feng, Sun, Y. '17]:

Easy regime	Hard regime
• $O(\Delta \log n)$ -round is easy	• can be $\Omega(Diam)$ -hard when $Diam = n^{\Omega(1)}$
• O(log <i>n</i>)-round is possible	
• $\Omega(\log n)$ -round is necessary	

Phase Transition

Corerelation decay:

$$\forall \sigma_{\underline{B}}, \tau_{\underline{B}} \in [q]^B :$$

 $d_{\mathrm{TV}}(\mu_{v}(\ \cdot \ | \ \boldsymbol{\sigma}_{B}), \mu_{v}(\ \cdot \ | \ \boldsymbol{\tau}_{B}))$

 $\Omega(Diam)$ -hard

 $\leq \exp(-\Omega(r))$

Hard regime: there is long-range correlation

G

- $(\Delta 1)$ -coloring on triangle-free graph
- independent set when $\Delta = 6$ or higher

Easy regime: various forms of correlation decays

- Dobrushin-Shlosman condition
- Uniqueness condition (spatial mixing)
- ...

Outline

- Distributed Sampling Problem
 - Gibbs Distribution (distribution defined by local constraints)
- Algorithmic Ideas
 - Local Metropolis Algorithm [Feng, Sun, Y., PODC'17]
 - LOCAL Jerrum-Valiant-Vazirani [Feng, Y., PODC'18]
 - Local Rejection Sampling [Feng, Vishnoi, Y., STOC'19]
- Distributed Simulation of Metropolis

Single-Site Markov Chain

Metropolis for *q*-coloring:

starting from an arbitrary $X \in [q]^V$ at each step:

pick a uniform random vertex v; propose a random color $c \in [q]$;

change X(v) to c if it's proper;

Metropolis for general MRF:

pick a uniform random vertex v; propose to change X(v) to a random color $c \in [q]$;

accept the change with probability $\min\left\{1, \frac{\mu(X')}{\mu(X)}\right\} = \min\left\{1, \prod_{u \in N(v)} \frac{A_{u,v}(X(u), c)}{A_{u,v}(X(u), X(v))}\right\}$

[Bubley, Dyer, 97]: path-coupling works

mixing in O(n log n) steps

The Local Metropolis Algorithm

proposals:

current:

starting from an arbitrary $X \in [q]^V$, at each step:

each vertex $v \in V$ independently proposes a random $c_v \in [q]$; each edge $(u,v) \in E$ passes its test independently with probability: $A_{u,v}(X_u, c_v) \cdot A_{u,v}(c_u, X_v) \cdot A_{u,v}(c_u, c_v)$;

each vertex $v \in V$ accepts to change to its proposed value c_v if all incident edges pass their test;

• converge to the correct Gibbs distribution μ . [Feng, Sun, Y. '17]

The Local Metropolis Algorithm

current:

For *q*-coloring, at each step:

each vertex $v \in V$ independently proposes a random color $c_v \in [q]$; each vertex $v \in V$ accepts to change to its proposed color c_v if: $X_u \neq c_v \land c_u \neq X_v \land c_u \neq c_v$;

[Feng, Sun, Y. '17], [Fischer, Ghaffari '18], [Feng, Hayes, Yin '18]:

• Converges in O(log *n*) rounds when:

path-coupling works for (sequential) Metropolis chain

Dobrushin-Shlosman condition $(2+\delta)\Delta$ -coloring

LOCAL Jerrum-Valiant-Vazirani

[Jerrum, Valiant, Vazirani '86]: (for self-reducible problems)

LOCAL JVV [Feng, Y. '18]: (for self-reducible problems)

- $(2+\delta)\Delta$ -coloring; 1.733Δ -coloring on triangle-free graph;
- **Conjecture**: $(1+\delta)\Delta$ -coloring

Local Rejection Sampling $\forall \sigma \in [q]^{V}: \quad \mu(\sigma) \propto \prod_{e=(u,v) \in E} A_{u}(\sigma_{u}, \sigma_{v}) \quad \text{where} \quad A_{e}: [q]^{2} \rightarrow [0,1]$

a Moser-Tardos style algorithm [Feng, Vishnoi, Y. '19]:

each $v \in V$ ind. samples a random $\sigma_v \in [q]$; each $e=(u,v) \in E$ samples $F_e \in \{0,1\}$ ind. with $\Pr[F_e=0] = A_e(\sigma_u,\sigma_v)$; while $\exists e \in E$ s.t. $F_e = 1$ do: resample σ_v for all $v \in R \triangleq \bigcup e$; $e \in E: F_{e} = 1$ for each $e=(u,v) \in E$ that $e \cap R \neq \emptyset$, resample $F_e \in \{0,1\}$ ind. as: $\Pr[F_e = 0] = \begin{cases} A_e(\sigma_u, \sigma_v) & u, v \in R \text{ (internal edge)} \\ \frac{A_e(\sigma_u, \sigma_v)}{A_e(\sigma_u, \sigma_v)} \min A_e(\sigma_u, \cdot) & u \notin R, v \in R \text{ (boundary edge)} \end{cases}$

each $v \in V$ returns σ_v ;

Local Rejection Sampling

[Feng, Vishnoi, Y. '19], [Feng, Guo, Y. '19]

a Moser-Tardos style algorithm:

- perfect sampling, Las Vegas
- parallel/distributed (CONGEST)
- O(log *n*)-round when converge
- works for dynamic input

each $v \in V$ ind. samples a random $\sigma_v \in [q]$;		
each $e=(u,v) \in E$ samples $F_e \in \{0,1\}$ ind. with $\Pr[F_e = 0] = A_e(\sigma_u, \sigma_v)$;		
while $\exists e \in E$ s.t. $F_e = 1$ do:		
resample σ_v for all $v \in R \triangleq \bigcup e$;		
$e \in E: F_e = 1$		
for each $e=(\underline{u},\underline{v}) \in E$ that $e \cap R \neq \emptyset$, resample $F_e \in \{0,1\}$ ind. as:		
$\begin{cases} A_e(\sigma_u, \sigma_v) & u, v \in R \text{(internal edge)} \end{cases}$		
$\Pr[F_e = 0] = \begin{cases} A_e(\sigma_u, \sigma_v) & u, v \in R \text{ (internal edge)} \\ \frac{A_e(\sigma_u, \sigma_v)}{A_e(\sigma_u, \sigma_v^{\text{old}})} \min A_e(\sigma_u, \cdot) & u \notin R, v \in R \text{ (boundary edge)} \end{cases}$		
each $v \in V$ returns σ_v ;		

- require stronger types of correlation decay:
 - $O(\Delta^2)$ -coloring (for a variant of the algorithm)

	Features/Limitations	Fast regimes
Local Metropolis	 synchronous parallel Markov chain Monte Carlo sampling CONGEST model 	 path-coupling works for sequential process (Dobrushin-Shlosman cond.) (2+δ)Δ-coloring
LOCAL JVV	 perfect sampling abuses LOCAL model O(log³ n) rounds 	 needs only necessary correlation decay conjecture: (1+δ)Δ-coloring
Local Rejection Sampling	 Moser-Tardos style Las Vegas, perfect sampling CONGEST model works on dynamic input 	 requires faster correlation decay O(Δ²)-coloring

	Features/Limitations	Fast regimes
Universal Simulation of Metropolis	CONGEST model	 as long as sequential Metropolis algorithm has O(n log n) mixing time
LOCAL JVV	 perfect sampling abuses LOCAL model O(log³ n) rounds 	 needs only necessary correlation decay conjecture: (1+δ)Δ-coloring
Local Rejection Sampling	 Moser-Tardos style Las Vegas, perfect sampling CONGEST model works on dynamic input 	 requires faster correlation decay O(Δ²)-coloring

Feng, Guo, Y. Perfect sampling from spatial mixing. arXiv:1907.06033.

Feng, Hayes, Y. Distributed Metropolis Sampler with Optimal Parallelism. arxiv:1904.00943

Feng, Hayes, Y. Distributed Sampling Almost-Uniform Graph Coloring with Fewer Colors. arxiv: 1802.06953.

Feng, Vishnoi, Y. Dynamic Sampling from graphical models. STOC'19. arxiv: 1807.06481.

Feng, Y. On local distributed sampling and counting. PODC'18. arxiv: 1802.06686.

Feng, Sun, Y. What can be sampled locally? PODC'17. arxiv: 1702.00142.