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• LOCAL Jerrum-Valiant-Vazirani

• Local Rejection Sampling

• Distributed Simulation of Metropolis (with ideal parallelism)

MCMC

MCMC

MCMC:  Markov chain Monte Carlo



Single-Site Markov Chain

vv propose a random color c∈[q];

change v’s color to c if it’s proper;

at each step:

Metropolis Algorithm
(q-coloring)

for a uniform random vertex v

Start from an arbitrary coloring ∈[q]V



vv propose a random color c∈[q];

change v’s color to c if it’s proper;

Metropolis Algorithm
(q-coloring)

Single-Site Markov Chain in 1960s
Each vertex holds an independent rate-1 Poisson clock.

When the clock at v rings:

continuous time T discrete time 
θ(nT) sequential steps

ring!



Distributed Simulation of 
Continuous-Time Process

Goal:   Give a distributed algorithm that perfect simulates 
the time T continuous Markov chain.

(Have the same behavior given the same random bits.)

do NOT allow adjacent vertices update 
their colors in the same round:

O(ΔT) rounds

[Feng, Hayes, Y. ’19]:

O(T + log n) rounds w.h.p.
(under some mild condition)



• locally generate all update times   
and proposed colors  ;

• send the initial color and all   to all neighbors;

0 < t1 < t2 < ⋯ < tMv
< T

c1, c2, …, cMv
∈ [q]

(ti, ci)1≤i≤Mv

Phase I: 

for each vertex  :v ∈ V

Phase II: 

• For   do:
once having received enough information:  
resolve the i-th update of v and send the result 
(“Accept / Reject”) to all neighbors;

i = 1,2,…, Mv

2-Phase Paradigm



for each vertex  :v ∈ V

• For   do:
once having received enough information:  
resolve the i-th update of v and send the result 
(“Accept / Reject”) to all neighbors;

i = 1,2,…, Mv

v

0
t1
t2
t3
t4
t5
t6
t7

u

curr-color =

“enough info” to resolve 
the i-th update at v:   (tv

i , cv
i )

✓
✗ all adjacent updates before "  

have been resolved and received by v
tv
i

#rounds > L

∃ a path  v1, v2, …, vL

T > tv1
i1

> tv2
i2

> ⋯ > tvL
iL

> 0
which occurs w.p. <(eT/L)L

#rounds = O(∆T + log n) w.h.p.



v

0
t1
t2
t3
t4
t5
t6
t7

u

curr-color =
✓
✗

Resolve Update In Advance

t

“enough info” to resolve the i-th update at v:    (t, c)

} Su(t)

If   : “Accept!”  c ∉ ⋃
u∼v

Su(t)

:   set of possible colors 
of u at time t

c =



v

0
t1
t2
t3
t4
t5
t6
t7

u

curr-color =
✓
✓

Resolve Update In Advance

}

If   : 
“Reject!”  

∃u ∼ v s.t. Su(t) = {c}

If   : “Accept!”  c ∉ ⋃
u∼v

Su(t)

“enough info” to resolve the i-th update at v:    (t, c)

Su(t) :   set of possible colors 
of u at time t

t

c =



Construct "  for every neighbor u of v;
upon  :  

send “Accept!” to all neighbors and i++;
upon  : 

send “Reject!” to all neighbors and i++;
upon receiving “Accept!” or “Reject!” from neighbor u:

update "  accordingly;

Su(t)
c ∉ ⋃

u∼v

Su(t)

∃u ∼ v s.t. Su(t) = {c}

Su(t)

to resolve the i-th update at v:    (t, c)

v

0
t1
t2
t3
t4
t5
t6
t7

u

curr-color =
✓
✗

t } Su(t) :   current set of 
possible colors of 

u at time t



Construct "  for every neighbor u of v;
upon  :  

send “Accept!” to all neighbors and i++;
upon  : 

send “Reject!” to all neighbors and i++;
upon receiving “Accept!” or “Reject!” from neighbor u:

update "  accordingly;

Su(t)
c ∉ ⋃

u∼v

Su(t)

∃u ∼ v s.t. Su(t) = {c}

Su(t)

to resolve the i-th update at v:    (t, c)

#round > L ∃ a path  :  v1, v2, …, vL

T > tv1
i1

> tv2
i2

> ⋯ > tvL
iL

> 0

along the path:  “good events” do not happen 
{

#paths ≤ ∆L

q>C∆ 
for constant C>0 #rounds = O(T + log n) w.h.p.

Pr < O ( T
qL )

L



The Metropolis Algorithm

let b=Xv and propose a random c∈[q];

change Xv to c with prob.  ;f v
b,c(XN(v))

Start from an arbitrary X∈[q]V

Metropolis filter:  

f v
b,c : [q]N(v) → [0,1]

b ∈ [q]:  current color of v
c ∈ [q]:  proposed color of v 

Each vertex holds an independent rate-1 poisson clock.

When the clock at v rings:
vv

ring!



• locally generate all update times   
and proposed colors  ;

• send the initial color and all   to all neighbors;

0 < t1 < t2 < ⋯ < tMv
< T

c1, c2, …, cMv
∈ [q]

(ti, ci)1≤i≤Mv

Phase I: 

for each vertex  :v ∈ V

Phase II: 

• For   do:
once having received enough information:  
resolve the i-th update of v and send the result 
(“Accept / Reject”) to all neighbors;

i = 1,2,…, Mv

2-Phase Paradigm



• For   do:
once having received enough information:  
resolve the i-th update of v and send the result 
(“Accept / Reject”) to all neighbors;

i = 1,2,…, Mv
to execute the 
Metropoli filter
^

Su(t) :   set of possible colors 
of u at time t

∀τ ∈ ⨂
u∼v

Su(t)

  gives a biased coinf v
b,c(τ)

v

0
t1
t2
t3
t4
t5
t6
t7

u

curr-color =
✓
✗

t }

curr-color = b
proposal = c

Idea: Couple all these coins!

to resolve the i-th update at v:    (t, c)



Construct "  for every neighbor u of v;

let b be v’s current color and:

 ;

  ;

sample a uniform random  ;

upon  :  

send “Accept!” to all neighbors and i++;

upon  : 

send “Reject!” to all neighbors and i++;

upon receiving “Accept!” or “Reject!” from neighbor u:

update "  accordingly and recalculate   and  ;

Su(t)

P𝖠𝖼𝖼 ≜ min
τ∈⨁u∼v Su(t)

fb,c(τ)

P𝖱𝖾𝗃 ≜ 1 − max
τ∈⨁u∼v Su(t)

fb,c(τ)

β ∈ [0,1]
β ≤ P𝖠𝖼𝖼

β ≥ 1 − P𝖱𝖾𝗃

Su(t) P𝖠𝖼𝖼 P𝖱𝖾𝗃

to resolve the i-th update at v:    (t, c)



Universal Distributed Simulation 
of Metropolis Algorithm

let b=Xv and propose a random c∈[q];

change Xv to c with prob.  ;f v
b,c(XN(v))

Metropolis Algorithm:
continuous-time T

∀(u, v) ∈ E, ∀a, a′�, b ∈ [q] : 𝔼c[δu,a,a′� f v
b,c] <

C
Δ

δu,a,a′� f v
b,c ≜ max

σ, τ 𝖽𝗂𝖿𝖿𝖾𝗋 𝗈𝗇𝗅, 𝖺𝗍 u
σu = a, τu = b

| f v
b,c(σ) − f v

b,c(τ) |where

∃ constant C>0:Lipschitz condition:

#rounds = O(T + log n) w.h.p.



model Lipschitz condition Necessary condition
 for mixing

q-coloring
∃ constant C>0 

q>C∆ q ≥ ∆+2

Ising model with 
temperature β

∃ constant C>0 

hardcore model 
with fugacity λ

∃ constant C>0 

1 − e−2|β| <
C
Δ

1 − e−2|β| <
2
Δ

λ <
C
Δ

λ <
(Δ − 1)Δ−1

(Δ − 2)Δ
≈

e
Δ − 2



Summary

• Universal distributed perfect simulation of 
Metropolis algorithms, with ideal parallelism under 
mild Lipschitz condition for Metropolis filter.

• Open problem:  distributed simulation of 
general class of single-site Markov chains.
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Local Computation

• CSPs with local constraints.

• Construct a feasible solution:  
vertex/edge coloring, Lovász local lemma

• Find local optimum:  MIS, MM

• Approximate global optimum: 
maximum matching, minimum vertex 
cover, minimum dominating set

Locally Checkable Labeling (LCL) 
problems:

Quest:  “Find a solution to the locally defined problem.”

network G(V,E)



“What can be sampled locally?”

network G(V,E)

• CSP with local constraints.

• Sample a uniform random 
solution.

• Distribution µ (over solutions) 
described by local rules.

• uniform LCL solution

• Ising model / RBM / 
tensor network…

Quest:  “Generate a sample from the locally defined distribution.”



Markov Random Fields
network G(V,E):• Each vertex corresponds to a 

variable with finite domain [q].

• Each edge (u,v)∈E imposes a 
binary constraint: Au,v

Xv∈[q]
u v

~X 2 [q]V follows µ 

Au,v : [q]2 →{0,1}

∀σ ∈ [q]V :

μ(σ) ∝ ∏
(u,v)∈E

Au,v(σu, σv)

• Gibbs distribution µ : 

• local conflict colorings:
[Fraigniaud, Heinrich, Kosowski ’16]



Markov Random Fields
network G(V,E):

Xv∈[q]
u v

~X 2 [q]V follows µ 

• Gibbs distribution µ : 

• vertex q-coloring:

• independent set:

μ(σ) ∝ ∏
(u,v)∈E

Au,v(σu, σv)∀σ ∈ [q]V :

• local conflict colorings:
[Fraigniaud, Heinrich, Kosowski ’16]

Au,v
0

0
⋱

0

Au,v =
1

1

Au,v = [1 1
1 0]

Au,v ∈ {0,1}q×q



Markov Random Fields
network G(V,E):• Each vertex corresponds to a 

variable with finite domain [q].

• Each edge (u,v)∈E imposes a 
binary constraint: Au,v

Xv∈[q]
u v

~X 2 [q]V follows µ 

Au,v : [q]2 →{0,1}

∀σ ∈ [q]V :

μ(σ) ∝ ∏
(u,v)∈E

Au,v(σu, σv)

• Gibbs distribution µ : 

• local conflict colorings:
[Fraigniaud, Heinrich, Kosowski ’16]

[ ]
“soft” constraint



Distributed Sampling

network G(V,E)

• Instance:  a Gibbs distribution µ 

• Output:  random Y ∈ [q]V

• approx. sampling:

• perfect sampling:

dTV(Y, μ) ≤ ϵ

Y ∼ μ

[Kandasamy, et al, AISTAT'18]  
[Dasklakis, et al, NIPS'18] 
[De Sa, et al, ICML’16 best paper] 
[De Sa, et al, NIPS’15] 
[Ahmed, et al, WSDM’12]

[Gonzalez, et al, AISTAT’11] 
[Yan, et al, NIPS’09] 
[Smyth, et al, NIPS’09] 
[Doshi-Velez, et al, NIPS’09] 
[Newman, et al, NIPS’08]

Empirical studies in machine learning:



Easy regime Hard regime

Distributed Sampling

network G(V,E)

• Instance:  a Gibbs distribution µ 

• Output:  random Y ∈ [q]V

• approx. sampling:

• perfect sampling:

dTV(Y, μ) ≤ ϵ

Y ∼ μ

[Feng, Sun, Y. ’17]:

• O(Δ log n)-round is easy

• O(log n)-round is possible

• Ω(log n)-round is necessary

• can be Ω(Diam)-hard 
when Diam = nΩ(1)



Phase Transition

• Dobrushin-Shlosman condition

• Uniqueness condition (spatial mixing)

• …

• (Δ-1)-coloring on triangle-free graph

• independent set when Δ=6 or higher

G

v r B dTV(μv( ⋅ ∣ σB), μv( ⋅ ∣ τB))

≤ exp(−Ω(r))

∀σB, τB ∈ [q]B :
Corerelation decay:

Hard regime:  there is long-range correlation

Easy regime:  various forms of correlation decays

Ω(Diam)-hard}
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Single-Site Markov Chain
G(V,E):

pick a uniform random vertex v;

propose a random color c∈[q];

change X(v) to c if it’s proper;

starting from an arbitrary X ∈ [q]V 

at each step :
Au,vvv

Metropolis for q-coloring:

pick a uniform random vertex v;

propose to change X(v) to a random color c∈[q];

accept the change with probability min {1,
μ(X′�)
μ(X ) } = min 1, ∏

u∈N(v)

Au,v(X(u), c)
Au,v(X(u), X(v))

Metropolis for general MRF:

[Bubley, Dyer, 97]:  path-coupling works mixing in O(n log n) steps



The Local Metropolis Algorithm

starting from an arbitrary X ∈ [q]V,  at each step:

each vertex v∈V independently proposes a random cv∈[q];

each edge (u,v)∈E passes its test independently with probability:

;

each vertex v∈V accepts to change to its proposed value cv 
if all incident edges pass their test;

u v w
Xu Xv Xwcurrent:

proposals: cu cv cw

• converge to the correct Gibbs distribution µ.   [Feng, Sun, Y. ’17]

Au,v(Xu, cv) ⋅ Au,v(cu, Xv) ⋅ Au,v(cu, cv)



The Local Metropolis Algorithm

For q-coloring,  at each step:

each vertex v∈V independently proposes a random color cv∈[q];
each vertex v∈V accepts to change to its proposed color cv if:

;

u v w
Xu Xv Xwcurrent:

proposals: cu cv cw

• Converges in O(log n) rounds when:

Xu ≠ cv ∧ cu ≠ Xv ∧ cu ≠ cv

[Feng, Sun, Y. ’17], [Fischer, Ghaffari ’18], [Feng, Hayes, Yin ’18]:

path-coupling works for 
(sequential) Metropolis chain

Dobrushin-Shlosman condition

(2+δ)Δ-coloring



LOCAL Jerrum-Valiant-Vazirani
[Jerrum, Valiant, Vazirani ’86]:  (for self-reducible problems)

approximate
counting

perfect
sampling

Poly-time TM

LOCAL JVV  [Feng, Y. ’18]:  (for self-reducible problems)

correlation
decay

LOCAL
approx.

inference

SLOCAL
perfect

sampling

LOCAL
perfect

sampling

unbounded
msg/comput.

local JVV 
reduction

network 
decomposition

• (2+δ)Δ-coloring;  1.733Δ-coloring on triangle-free graph;

• Conjecture:  (1+δ)Δ-coloring

“strong 
spatial mixing” O(log3 n) 

rounds



Local Rejection Sampling
μ(σ) ∝ ∏

e=(u,v)∈E

Au(σu, σv)∀σ ∈ [q]V : Ae : [q]2 → [0,1]where

each v ∈ V ind. samples a random σv∈[q];
each e=(u,v) ∈ E samples Fe ∈{0,1} ind. with Pr[Fe = 0] = Ae(σu,σv); 
while ∃e∈ E s.t. Fe =1 do:

resample σv for all ;

for each e=(u,v) ∈ E that e∩R ≠ ∅, resample Fe ∈{0,1} ind. as:

 

each v ∈ V returns σv;

v ∈ R ≜ ⋃
e∈E:Fe=1

e

Pr[Fe = 0] =
Ae(σu, σv) u, v ∈ R (internal edge)

Ae(σu, σv)

Ae(σu, σ𝗈𝗅𝖽
v )

min Ae(σu, ⋅ ) u ∉ R, v ∈ R (boundary edge)

a Moser-Tardos style algorithm [Feng, Vishnoi, Y. ’19]: 



Local Rejection Sampling

a Moser-Tardos style algorithm: 

[Feng, Vishnoi, Y. ’19], [Feng, Guo, Y. ’19]

• perfect sampling,  Las Vegas

• parallel/distributed (CONGEST)

• O(log n)-round when converge

• works for dynamic input

• require stronger types of correlation decay:

• O(Δ2)-coloring (for a variant of the algorithm)



Features/Limitations Fast regimes

Local 
Metropolis

• synchronous parallel 
Markov chain

• Monte Carlo sampling

• CONGEST model

• path-coupling works for 
sequential process 
(Dobrushin-Shlosman cond.)

• (2+δ)Δ-coloring

LOCAL 
JVV

• perfect sampling

• abuses LOCAL model

• O(log3 n) rounds

• needs only necessary 
correlation decay

• conjecture:          
(1+δ)Δ-coloring

Local 
Rejection 
Sampling

• Moser-Tardos style

• Las Vegas, perfect sampling

• CONGEST model

• works on dynamic input

• requires faster 
correlation decay

• O(Δ2)-coloring



Features/Limitations Fast regimes

Universal 
Simulation 

of 
Metropolis

• Monte Carlo sampling

• CONGEST model

• as long as sequential 
Metropolis algorithm has 
O(n log n) mixing time

LOCAL 
JVV

• perfect sampling

• abuses LOCAL model

• O(log3 n) rounds

• needs only necessary 
correlation decay

• conjecture:          
(1+δ)Δ-coloring

Local 
Rejection 
Sampling

• Moser-Tardos style

• Las Vegas, perfect sampling

• CONGEST model

• works on dynamic input

• requires faster 
correlation decay

• O(Δ2)-coloring



Thank you!
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