
Sampling & Counting
for Big Data

�����
+��

2019ଙࢵقቘᦞᦇᓒᑀଙտ
2019ଙ8์3෭ԭهय़

Sampling vs Counting

sampling
exact
approx}{

X = (X1, X2, …, Xn)

approx counting
vol(Ω)

approx inference
Pr[Xi = ⋅ ∣ XS = σ]

(
[Jerrum-Valiant-Vazirani ’86]:

Poly-Time
Turing

Machine

for all self-reducible problems

X ∼ Ω

MCMC Sampling

• Gibbs sampling (Glauber dynamics, heat-bath)

• Metropolis-Hastings algorithm

Markov chain for sampling X = (X1, X2, …, Xn) ∼ μ

pick a random i;
resample Xi ~ µv(· |N(v));

pick a random i;
propose a random c;

Xi = c w.p. ∝ µ(X’)/µ(X);

[Glauber, ’63]
[Geman, Geman, ’84]

[Metropolis et al, ’53]
[Hastings, ’84]

• Analysis: coupling methods

[Aldous, ’83] [Jerrum, ’95] [Bubley, Dyer ’97]
may give O(n log n) upper bound for mixing time

Computational Phase Transition
hardcore model: graph G(V,E), max-degree Δ, fugacity λ>0

approx sample independent set I in G w.p. ∝ λ|I|

�c(�) =
(�� 1)(��1)

(�� 2)�

2 4 6 8 10

1

2

3

4

5

6

Hard

Easy
max-deg Δ

λ

• [Weitz, STOC’06]: If λ<λc, nO(log Δ) time.

• [Sly, FOCS’10 best paper]: If λ>λc,
NP-hard even for Δ=O(1).

[Efthymiou, Hayes, Štefankovič,
Vigoda, Y., FOCS’16]:
If λ<λc, O(n log n) mixing time.

If Δ is large enough, and there is no small cycle.

A phase transition occurs at λc.

Big Data?

Sampling and Inference
for Big Data

• Sampling from a joint
distribution (specified by a
probabilistic graphical model).

• Inferring according to a
probabilistic graphical model.

• The data (probabilistic
graphical model) is BIG.

• Parallel/distributed algorithms for sampling?

• For parallel/distributed computing:
sampling ≡ approx counting/inference?

• Dynamic sampling algorithms?

✓

✓

✓

• PTIME ⟹ Polylog(n) rounds

• PTIME ⟹ Polylog(n) rounds

• PTIME ⟹ Polylog(n) incremental cost

Local Computation

• Communications are
synchronized.

• In each round: unlimited local
computation and communication
with neighbors.

• Complexity: # of rounds to
terminate in the worst case.

• In t rounds: each node can collect information up to distance t.

the LOCAL model [Linial ’87]:

“What can be computed locally?”

[Noar, Stockmeyer, STOC’93, SICOMP’95]

PLOCAL: t = polylog(n)

“What can be sampled locally?”

network G(V,E)

• Joint distribution defined by
local constraints:

• Markov random field

• Graphical model

• Sample a random solution
from the joint distribution:

• distributed algorithms
(in the LOCAL model)

Q: “What locally definable joint distributions
are locally sample-able?”

MCMC Sampling
G(V,E):

vv

Classic MCMC sampling:

Parallelization:

• Chromatic scheduler [folklore] [Gonzalez et al., AISTAT’11]:
Vertices in the same color class are updated in parallel.

• “Hogwild!” [Niu, Recht, Ré, Wright, NIPS’11][De Sa, Olukotun, Ré, ICML’16]:
All vertices are updated in parallel, ignoring concurrency issues.

pick a uniform random vertex v;

update X(v) conditioning on X(N(v));

Markov chain Xt → Xt+1 :

O(n log n) time when mixing

• O(Δ log n) mixing time (Δ is max degree)

• Wrong distribution!

Crossing the Chromatic # Barrier

Sequential Parallel

O(n log n) O(Δ log n)

∆ = max-degree

parallel speedup
= θ(n /Δ)

Q: “How to update all variables simultaneously and
still converge to the correct distribution?”

χ = chromatic no.

Do not update adjacent vertices simultaneously.
It takes ≥χ steps to update all vertices at least once.

Markov Random Fields

G(V,E)

• Each vertex v∈V: a variable over
domain [q] with distribution

• Each edge e=(u,v)∈E: a symmetric
binary constraint:

Xv∈[q]
u v

(MRF)

νv

ϕe : [q] × [q] → [0,1]

νv
ϕe

∀σ ∈ [q]V : μ(σ) ∝ ∏
v∈ V

νv(σv) ∏
e= (u ,v)∈E

ϕe(σu , σv)

The Local-Metropolis Algorithm

Markov chain Xt → Xt+1 :

each vertex v∈V independently proposes a random ;

each edge e=(u,v) passes its check independently with prob:

each vertex v∈V update Xv to σv if all its edges pass checks;

u v w
Xu Xv Xwcurrent:

proposals: σu σv σw

• Local-Metropolis converges to the correct distribution µ.

σv ∼ νv

ϕe(Xu , σv) ⋅ ϕe(σu , Xv) ⋅ ϕe(σu , σv);

[Feng, Sun, Y., What can be sample locally? PODC’17]

The Local-Metropolis Algorithm

each vertex v∈V independently proposes a random ;

each edge e=(u,v) passes its check independently with prob:

each vertex v∈V update Xv to σv if all its edges pass checks;

• Local-Metropolis converges to the correct distribution µ.

σv ∼ νv

ϕe(Xu , σv) ⋅ ϕe(σu , Xv) ⋅ ϕe(σu , σv);

μ(σ) ∝ ∏
v∈V

νv(σv) ∏
e= (u ,v)∈E

ϕe(σu , σv)MRF:

• under coupling condition for Metropolis-Hastings:

• Metropolis-Hastings: O(n log n) time

• (lazy) Local-Metropolis: O(log n) time

[Feng, Sun, Y., What can be sample locally? PODC’17]

Lower Bounds

Approx sampling from any MRF requires Ω(log n) rounds.

• for sampling: O(log n) is the new criteria of “local”

If λ>λc, sampling from hardcore model requires Ω(diam) rounds.

• Independent set is trivial to
construct locally (e.g. ∅).

• The lower bound holds not because
of the locality of information, but
because of the locality of correlation.

strong separation: sampling vs other
local computation tasks

[Feng, Sun, Y., What can be sample locally? PODC’17]

�c(�) =
(�� 1)(��1)

(�� 2)�

2 4 6 8 10

1

2

3

4

5

6

Hard

Easy
max-deg Δ

λ

• Parallel/distributed algorithms for sampling?

• PTIME ⟹ Polylog(n) rounds

• For parallel/distributed computing:
sampling ≡ approx counting/inference?

• PTIME ⟹ Polylog(n) rounds

• Dynamic sampling algorithms?

• PTIME ⟹ Polylog(n) incremental cost

✓

✓

✓

Example: Sample Independent Set

• Y ∈ {0,1}V indicates an
independent set

• Each v∈V returns a Yv∈ {0,1},
such that Y = (Yv)v∈V ∼ µ

• Or: dTV(Y, µ) < 1/poly(n)

µ: distribution of independent sets I in G

network G(V,E)

∝ λ|I|

(hardcore model)

Inference (Local Counting)

network G(V,E)

• Each v ∈ S receives σv as input.

• Each v ∈ V returns a marginal
distribution such that:µ̂�

v

dTV(µ̂�
v , µ

�
v) 1

poly(n)

: marginal distribution at v conditioning on σ ∈{0,1}S.µ�
v

0

1 1

0

8y 2 {0, 1} : µ�
v (y) = Pr

Y ⇠µ
[Yv = y | YS = �]

1

Z
= µ(;) =

nY

i=1

Pr
Y ⇠µ

[Yvi = 0 | 8j < i : Yvj = 0]

Z: partition function (counting)

µ: distribution of independent sets I in G ∝ λ|I|

Decay of Correlation

strong spatial mixing (SSM):

SSM

approx. inference is solvable
in O(log n) rounds

in the LOCAL model

G

v r B
σ

: marginal distribution at v conditioning on σ ∈{0,1}S.µ�
v

∀ boundary condition B∈{0,1}r-sphere(v):

dTV(µ
�
v , µ

�,B
v) poly(n) · exp(�⌦(r))

(iff λ≤λc when µ is the
hardcore model)

Locality of Counting & Sampling

SSM

Correlation
Decay:

Inference: Sampling:

local approx.
sampling

local approx.
inference

local approx.
inference

local exact
sampling

with additive error

with multiplicative error

For all self-reducible graphical models:

O(log2 n) factor

easy

distributed
Las Vegas sampler

[Feng, Y., PODC’18]

Locality of Sampling
Inference: Sampling:

local approx.
sampling

local approx.
inferenceSSM

Correlation
Decay:

sequential O(log n)-local procedure:

µ̂�
veach v can compute a

within O(log n)-ball

s.t.

• scan vertices in V in an arbitrary order v1, v2, …, vn

• for i=1,2, …, n: sample according to Yvi µ̂
Yv1 ,...,Yvi�1
vi

return a random Y = (Yv)v∈V

whose distribution µ̂ ⇡ µ

dTV (µ̂, µ) 1
poly(n)dTV (µ̂�

v , µ
�
v) 1

poly(n)

Network Decomposition

• scan vertices in V in an arbitrary order v1, v2, …, vn

• for i=1,2, …, n: sample according to Yvi µ̂
Yv1 ,...,Yvi�1
vi

Given a (C,D)r- ND:

can be simulated in O(CDr) rounds in LOCAL model

sequential r-local procedure: r = O(log n)

(C,D) -network-decomposition of G:

• classifies vertices into clusters;

• assign each cluster a color in [C];
• each cluster has diameter ≤D;

• clusters are properly colored.

(C,D)r-ND: (C,D)-ND of Gr

r = O(log n)

Network Decomposition

r-local SLOCAL algorithm:
∀ ordering π=(v1, v2, …, vn),

returns random vector Y(π)

O(rlog2n)-round LOCAL alg.:
returns w.h.p. the Y(π)
for some ordering π

[Ghaffari, Kuhn, Maus, STOC’17]:

ND

(O(log n), O(log n))r-ND can be
constructed in O(r log2 n) rounds w.h.p.

(C,D) -network-decomposition of G:

• classifies vertices into clusters;

• assign each cluster a color in [C];
• each cluster has diameter ≤D;

• clusters are properly colored.

(C,D)r-ND: (C,D)-ND of Gr

Locality of Counting & Sampling

SSM

Correlation
Decay:

Inference: Sampling:

local approx.
sampling

local approx.
inference

local approx.
inference

local exact
sampling

with additive error

with multiplicative error

O(log2 n) factor

easy

distributed
Las Vegas sampler

[Feng, Y., PODC’18]
For all self-reducible graphical models:

Boosting Local Inference

SSM
local approx.

inference

µ̂�
veach v computes a

within r-ball

(

• scan vertices in V in an arbitrary order v1, v2, …, vn

• for i=1,2, …, n: sample according to Yvi µ̂
Yv1 ,...,Yvi�1
vi

boosted sequential r-local sampler: r = O(log n)

multiplicative error: e�1/n2

 µ̂(�)

µ(�)
 e1/n

2

8� 2 {0, 1}V :

both are achievable with r = O(log n)SSM
local self-reduction

additive error:
dTV (µ̂�

v , µ
�
v) 1

poly(n)

multiplicative error:
µ̂�
v (0)

µ�
v (0)

,
µ̂�
v (1)

µ�
v (1)

2
h
e�1/poly(n), e1/poly(n)

i

pass 1: sample Y ∈ {0,1}V by boosted sequential r-local sampler ;

SLOCAL JVV

pass 1’: construct a sequence of ind. sets ∅=Y0, Y1, …, Yn =Y;

µ̂

Scan vertices in V in an arbitrary order v1, v2, …, vn :

s.t. ∀ 0 ≤ i ≤ n: • Yi agrees with Y over v1, …, vi

• Yi and Yi-1 differ only at vi

vi samples independently with

where

r = O(log n)

O(log n)-local
to compute

e�1/n2

 µ̂(�)

µ(�)
 e1/n

28� 2 [q]V :

2 [e�5/n2

, 1]

Fvi 2 {0, 1} Pr[Fvi = 0] = qvi

qvi =
µ̂(Y i�1)

µ̂(Y i)
· e�3/n2

Each v∈V returns:

• Yv ∈{0,1} to indicate the ind. set;

• Fv ∈{0,1} indicate failure at v.

Pr[Y = � ^ 8i : Fvi = 0] = µ̂(�)
nY

i=1

qvi = µ̂(�)
nY

i=1

✓
µ̂(Y i�1)

µ̂(Y i)
· e�3/n2

◆�����
Y n=Y =�

= µ̂(�) · µ̂(;)
µ̂(�)

· e� 3
n

8� 2 {0, 1}V :

pass 1: sample Y ∈ {0,1}V by boosted sequential r-local sampler ;

pass 1’: construct a sequence of ind. sets ∅=Y0, Y1, …, Yn =Y;

µ̂

Scan vertices in V in an arbitrary order v1, v2, …, vn :

s.t. ∀ 0 ≤ i ≤ n: • Yi agrees with Y over v1, …, vi

• Yi and Yi-1 differ only at vi

vi samples independently with

where

r = O(log n)e�1/n2

 µ̂(�)

µ(�)
 e1/n

28� 2 [q]V :

2 [e�5/n2

, 1]

Fvi 2 {0, 1} Pr[Fvi = 0] = qvi

qvi =
µ̂(Y i�1)

µ̂(Y i)
· e�3/n2

∝ {λ∥σ∥1 σ is ind. set
0 otherwise

Locality of Counting & Sampling

SSM

Correlation
Decay:

Inference: Sampling:

local approx.
sampling

local approx.
inference

local approx.
inference

local exact
sampling

with additive error

with multiplicative error

O(log2 n) factor

easy

distributed
Las Vegas sampler

[Feng, Y., PODC’18]
For all self-reducible graphical models:

If :

• strong spatial mixing holds [Weitz ’06];

• ∃ O(log3 n)-round distributed Las Vegas sampler.

Local Exact Sampler
hardcore model: distribution of independent sets I ∝ λ|I|

� < �c(�) =
(�� 1)��1

(�� 2)�

[Feng, Sun, Y., PODC’17]:

If λ>λc, any approx sampler requires Ω(diam) rounds.

[Feng, Y., PODC’18]:

2 4 6 8 10

1

2

3

4

5

6

Hard

Easy Δ

λ

Hold for Big Data (local computation)!

Distributed Las Vegas Sampler

• Each v∈V returns in fixed rounds:

• local output Yv∈{0,1};

• local failure Fv∈{0,1}.

• Succeeds w.h.p.: ∑v∈V E[Fv] = o(1).

• Conditioning on success, Y ~ µ.

• Each v∈V returns in random rounds:

• local output Yv∈{0,1}.

• Correctness: Y ~ µ.

Las Vegas (certifiable failure):

Las Vegas (zero failure):
? ✓ dynamic

sampler

• Parallel/distributed algorithms for sampling?

• PTIME ⟹ Polylog(n) rounds

• For parallel/distributed computing:
sampling ≡ approx counting/inference?

• PTIME ⟹ Polylog(n) rounds

• Dynamic sampling algorithms?

• PTIME ⟹ Polylog(n) incremental cost

✓

✓

✓

Graphical Model

• Each v∈V: a variable with domain
[q] following distribution

• Each e∈E is a set of variables and
corresponds to a constraint
(factor)

ϕe : [q]e → [0,1]

constraint
e

νv

νv

ϕe

hypergraph (V,E)

∀σ ∈ [q]V : μ(σ) ∝ ∏
v∈ V

νv(σv)∏
e∈ E

ϕe(σe)

Dynamic Sampling
• distribution µ over all σ∈[q]V :

νvϕeu v

• adding/deleting a constraint e

• changing a function νv or ,e

• adding/deleting an independent variable v

current sample: X ~ µ

μ(σ) ∝ ∏
v∈ V

νv(σv)∏
e∈ E

ϕe(σe)

dynamic update:

Obtain X’ ~ µ’ from X ~ µ with small incremental cost.

Question:

new distribution

 µ’}

ϕ′�e

ν′�v

Dynamic Sampling
Input:

Output:

a graphical model which defines distribution µ
a sample X ~ µ, and an update changing µ to µ’

a new sample X’ ~ µ’

• inference/learning tasks where the graphical model is
changing dynamically
• video processing

• online learning with dynamic or streaming data

• sampling/inference/learning algorithms which
adaptively and locally change the joint distribution
• stochastic gradient descent

• approximate counting / self-reduction

Dynamic Sampling

• µ could be changed significantly by dynamic updates;

• Monte Carlo sampling does not know when to stop;

• notions such as mixing time give worst-case estimation.

Goal:

transform a X ~ µ to a X’ ~ µ’
by local changes

Current sampling techniques are not powerful enough:

Input:

Output:

a graphical model which defines distribution µ
a sample X ~ µ, and an update changing µ to µ’

a new sample X’ ~ µ’

Rejection Sampling
• distribution µ over all σ∈[q]V :

μ(σ) ∝ ∏
v∈ V

νv(σv)∏
e∈ E

ϕe(σe)

νv over [q]

ϕe : [q]e → [0,1]

• each v ∈ V independently samples Xv∈[q] according to ;

• each e ∈ E is passed independently with probability ,e(Xe);

• X is accepted if all constraints e ∈ E are passed.

distribution

νv

constraint
e

νv

ϕe

• µ: distribution of X conditioning on accept

• Probability of accept is exponentially small!

Question I:
(dynamic sampling)
Given a X ~ µ, when µ → µ’

transform X to a X’ ~ µ’ .

Question II:
(rejection sampling)

Make rejection sampling
great again!

(when part of X is rejected, only resample the
rejected part while still being correct)

[Feng, Vishnoi, Y., STOC’19]

For general graphical models:

[Guo, Jerrum, Liu, STOC’17]
for Boolean CSP

Dynamic Sampler

• each e ∈ E+(R) computes

• each v ∈ R resamples Xv ∈[q] independently according to ,v;

• each e ∈ E+(R) is passed independently with prob. κe·,e(Xe);

•

./01234/(X, R) :

R ← ⋃e∈E: violated e
e;

κe = min
xe: xe∩R= Xe∩R

ϕe(xe)/ϕe(Xe)

• Let R includes the variables affected by the update;

• while R ≠ ∅ :

• (X, R) ← ./01234/(X, R);

Upon receiving an update to the graphical model :

(otherwise e is violated)

[Feng, Vishnoi, Y., STOC’19]

Correctness of Sampling

Correctness:
Assuming input sample X ~ µ, upon termination, the dynamic
sampler returns a sample from the updated distribution µ’.

[Feng, Vishnoi, Y., STOC’19]

Correctness of Sampling

Equilibrium:
If (X,R) is conditionally Gibbs w.r.t. µ’, then so is (X’,R’).

A random (X,R) is conditionally Gibbs w.r.t. µ if conditioning on any
choice of R and XR, the distribution of the rest XV\S, is correct.

Conditional Gibbs Property:

[Feng, Vishnoi, Y., STOC’19]

Fast Convergence

Sufficient Condition for Fast Convergence:
If for the graphical model with max-edge-degree d:

∀e ∈ E, min
x

ϕe(x) > 1 − 1
d + 1

then O(1) incremental cost per update in expectation.

• Las Vegas (good for simulation)

• parallel & distributed (good for systems)

• better static sampling algorithm

• Parallel/distributed algorithms for sampling

• Dynamic sampling algorithms

• For parallel/distributed computing:
sampling ≡ approx counting/inference

Feng, Y.: On local distributed sampling and counting. PODC’18.

Feng, Sun, Y.: What can be sampled locally? PODC’17.

Feng, Hayes, Y.: Distributed Sampling Almost-Uniform Graph Coloring
with Fewer Colors. arXiv: 1802.06953.

Feng, Hayes, Y.: Fully-Asynchronous Distributed Metropolis Sampler
with Optimal Speedup. arXiv:1904.00943.

Feng, Vishnoi, Y.: Dynamic Sampling from Graphical Models. STOC’19.

Feng, He, Sun, Y.: Dynamic MCMC Sampling. arXiv:1904.11807.

Feng, Guo, Y.: Perfect sampling from spatial mixing. arXiv:1907.06033.

Thank you!

