Sampling in High-Dimensional Space in Network Environment

(from a *Theory of Computing* Point of View)

Yitong Yin (尹一通) **Nanjing University**

Huawei STW 2022 Shenzhen 2022.6.26-6.28

Sampling in High-Dimensional Space

Given an *n*-dimensional joint distribution μ , draw a sample $X = (X_1, X_2, ..., X_n) \sim \mu$.

One of the earliest computer programs (nuclear Monte Carlo simulations on ENIAC)

Sampling in High-Dimensional Space

Given an *n*-dimensional joint distribution μ , draw a sample $X = (X_1, X_2, ..., X_n) \sim \mu$.

- Crucial for **today's** computational tasks:
 - Probabilistic inference: guessing possible values of X_i given values of X_{ς}
 - **Optimization via sampling**: finding x with max $\mu(x)$ by drawing $X \sim \mu$
 - High-dimensional integration: calculating
 - **Statistical physics:** simulating interacting particle systems
 - Approximate counting: e.g. estimating Network Reliability

One of the earliest computer programs (nuclear Monte Carlo simulations on ENIAC)

or estimating volumes $\mathbf{J}_{\mathbb{R}^n}$

Gibbs Distribution

- High-dimensional distribution μ described by local constraints:
 - *n* variables on finite discrete domain Ω
 - a set \mathscr{C} of local constraints (f, S) with scope $S \subseteq [n]$ and $f: \Omega^S \to [0, 1]$ $\forall x \in \Omega^n: \quad \mu(x) \propto \qquad f(x_S)$ $(f,S) \in \mathscr{C}$

- For hard constraints $f: \Omega^S \to \{0,1\}$, the μ is uniform distribution over constraint satisfaction solutions
- Examples of Gibbs distributions: graphical model, Bayesian network, Boltzmann machine, Markov random field, factor graph, spin system, weighted CSP, ...

Gibbs Sampler

(a.k.a. Glauber dynamics, heat-bath dynamics) [Glauber 1963]

the Markov chain maintains an $x \in \Omega^n$; at each step:

- pick an $v \in \{1, 2, ..., n\}$ uniformly at random;
- update x_v randomly according to the marginal distribution $\mu_v(\cdot \mid x_{N(v)})$;

Random walk in Ω^n

Gibbs Sampler

(a.k.a. Glauber dynamics, heat-bath dynamics) [Glauber 1963]

the Markov chain maintains an $x \in \Omega^n$; at each step:

- pick an $v \in \{1, 2, ..., n\}$ uniformly at random;
- update x_v randomly according to the marginal distribution $\mu_v(\cdot \mid x_{N(v)})$;
- The Gibbs sampler converges (mixes) to μ .
 - Many other Markov chains converge to μ , e.g. the Metropolis algorithm [Metropolis 1953] ullet
- The convergence rate (mixing time) depends on properties of μ . $T_{mix} = \max\min\{t \ge t\}$ X

• What makes a family of distributions easy/hard to sample? **New algorithms?**

$$1 | ||P^{t}(x, \cdot) - \mu||_{1} \le 1/e \}$$

Outline

- Computational Phase Transition of Sampling
 - Phase transition of probabilistic graphical models
 - Phase transition of sampling constraint satisfaction solutions (a.k.a. a sampling Lovász local lemma)
- Network Algorithms for Gibbs Sampling
 - Parallel/Distributed/Dynamic sampling algorithms
- **Application:** Network Reliability Estimation

Computational Phase Transition of Sampling

STATE OF MATTER

Physical **Phase Transition**

- Gibbs distribution: $\forall x \in \Omega^n: \quad \mu(x) \propto \qquad \qquad f(x_S)$

locally constrained random variables \iff locally interacting particle states

Continuous change of strength of local interaction \implies sharp transition of global state (state of matter / computational complexity)

Hardcore Model

• Given a graph G(V, E) and a parameter $\lambda > 0$:

 \forall independent set $I \subseteq V$ of G: $\mu(I) \propto \lambda^{|I|}$

- Critical threshold (for phase transition of hardcore gas with fugacity λ on Δ -degree Bethe lattice):
- $\lambda > \lambda_c(\Delta) \Longrightarrow$ sampling is NP-hard [SIy, FOCS 2010 best paper]

• $\lambda < \lambda_c(\Delta)$: $n^{O(\log \Delta)}$ [Weitz [Anari, Liu, Oveis Gharan [Chen, Liu, Vigoda **STOC '07**] **FOCS** '20] **STOC** '21]

for all Gibbs distributions with pairwise repulsive constraints on Boolean variables (anti-ferromagnetic two-state spin systems)

Gibbs sampler:

maintain an independent set $I \subseteq V$:

- pick an $v \in V$ uniformly at random;
- if $I \cup \{v\}$ is independent set then

 $I \leftarrow \begin{cases} I \cup \{v\} & \text{with prob.} \frac{\lambda}{1+\lambda} \\ I \setminus \{v\} & \text{with prob.} \frac{1}{1+\lambda} \end{cases}$

Constraint Satisfaction Solutions

• For hard constraints (Boolean decisions) $f: \Omega^S \to \{0,1\}$

 μ is the uniform distribution over all constraint satisfaction solutions

- Example: k-SAT with variable degree d

- $\forall x \in \Omega^n: \quad \mu(x) \propto \qquad f(x_S)$ $(f,S) \in \mathscr{C}$

CNF formula $(x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_4) \land (x_3 \lor \neg x_4 \lor \neg x_5)$

Barrier: classic sampling algorithms rely on connectivity of solution space

Satisfying solution exists when $k \ge \log d$ (Lovász local lemma)

Overcome the Connectivity Barrier

Projected Markov chain:

Properly construct a subset $U \subseteq V$ of variables; Sample $x_U \sim \mu_U$ by simulating Gibbs sampler on μ_U ; Extend x_{II} to a satisfying solution $x \sim \mu$;

- Efficiently construct a "good" subspace $U \subseteq V$:

 - •
- Fast sampler in near-linear time (under Lovász local lemma like condition):
 - SAT [Feng, Guo, Y., Zhang, STOC 2020]
 - CSP with atomic constraints [Feng, He, Y., STOC 2021]
 - general CSP (constraint satisfaction problem) [He, Wang, Y., FOCS 2022]

Idea: project onto lower dimension to improve connectivity

Gibbs sampler for μ_U is fast-convergent (the subspace is well-connected) and efficient to implement

it is efficient to extend a random partial solution $x_U \sim \mu_U$ to a uniform satisfying solution $x \sim \mu$

Network Algorithms for Gibbs Sampling

Distributed Gibbs Sampling

- Generate high-dimensional sample in a network:
 - Each node $v \in \{1, 2, ..., n\}$ generates a random X_v
 - Altogether it follows the correct joint distribution

 $X = (X_1,$

$$(X_2,\ldots,X_n) \sim \mu$$

Distributed Gibbs Sampling

Gibbs sampler for μ :

maintain an $x \in \Omega^n$, at each step:

- pick a random $v \in \{1, 2, ..., n\};$
- update x_v according to $\mu_v(\cdot \mid x_{N(v)})$;
- Classic sampling algorithms are intrinsically sequential.
- Barrier for parallelization: update of variable depends on neighbors' states

- concurrent updates of adjacent variables \implies fault
- correct parallelization: $O(\Delta)$ overhead!

• Is it possible to correctly parallelize the Markov chain with linear speedup?

Distributed Gibbs Sampling

Gibbs sampler for μ :

maintain an $x \in \Omega^n$, at each step:

- pick a random $v \in \{1, 2, ..., n\};$
- update x_v according to $\mu_v(\cdot \mid x_{N(v)})$;

Is it possible to correctly parallelize the Markov chain with linear speedup?

- a parallel chain called LocalMetropolis [Feng, Sun, Y., PODC 2017]
- sampling by network decomposition [Feng, Y., PODC 2018]
- parallelize Metropolis algorithm [Feng, Hayes, Y., SODA 2021]

An Idealized Parallel "Sampling Algorithm"

Continuous-time Gibbs sampler for μ :

each $v \in \{1, 2, ..., n\}$ holds a Poisson clock;

when the clock at v rings:

update x_v according to $\mu_v(\cdot \mid x_{N(v)})$; •

- This is the original definition of Gibbs sampler [Glauber 1963].
- models the evolution of physical world.

O(T) continuous-time duration $\iff O(nT)$ discrete-time steps

An idealized (continuous-time with atomic update operation) process that

• Simulate this idealized process on computer network with no overhead?

Parallelize the Gibbs Sampler

Continuous-time Gibbs sampler for μ : [Glauber 1963] each $v \in \{1, 2, ..., n\}$ holds a Poisson clock; when the clock at v rings:

• update x_v according to $\mu_v(\cdot \mid x_{N(v)})$;

- Ideas:
- A much weakened Dobrushin's condition (which is almost always satisfied)

Algorithm 1: An iterative algorithm for simulating single-site dynamics **Input:** initial configuration $X_0 \in Q^V$; update schedule $\mathfrak{T} = (t_i^v)_{v \in V, 0 \le i \le m_v}$; assignment $\mathfrak{R} = (\mathcal{R}_{(v,i)})_{v \in V, 1 \leq i \leq m_v}$ of random bits for resolving updates. 1 initialize $\ell \leftarrow 0$ and $\widehat{X}_v^{(0)}[i] \leftarrow X_0(v)$ for all $v \in V, 0 \le i \le m_v$; 2 repeat 3 $\mid \ell \leftarrow \ell + 1;$ forall $v \in V$ in parallel do $\widehat{X}_v^{(\ell)}[0] \leftarrow X_0(v)$; forall updates (v, i), where $v \in V$, $1 \le i \le m_v$, in parallel do 5 let $\tau \in Q^{N_v^+}$ be constructed as: 6 $\forall u \in N_v^+, \tau_u \leftarrow \widehat{X}_u^{(\ell-1)}[j_u] \text{ for } j_u = \max\{j \ge 0 \mid t_j^u < t_i^v\};$ $\widehat{X}_{v}^{(\ell)}[i] \leftarrow \mathsf{Sample}\left(P_{v}^{\tau}, \mathcal{R}_{(v,i)}\right);$ 7 8 end 9 until $\widehat{X}^{(\ell)} = \widehat{X}^{(\ell-1)}$;

Construct a dynamical system whose fixpoint corresponds to the correct evolution of the chain.

Simulate this dynamical system by a locally-iterative message passing algorithm on the network.

A universal coupling of random bits used in different iterations to ensure fast stabilization to fixpoint.

 \implies faithful parallel simulation of Gibbs sampler with linear speedup [Liu, Y., STOC 2022] (all single-site dynamics)

Dynamic Sampling

- Sampling/inference tasks on dynamically changing data: Online data, data streams, network environment, etc.
- Dynamically changing graphical models generated in:
 - Locally-iterative algorithms for learning.
 - Self-reduction procedure in approximate counting.

Classic random walks fail on dynamic data

• Algorithmic Lipschitz: transform $X \sim \mu$ to $X' \sim \mu'$ with cost proportional to diff (μ, μ')

Dynamic Sampling

Algorithm 1: Dynamic Sampler

Input : a graphical model \mathcal{I} and a random sample $X \sim \mu_{\mathcal{I}}$; **Update:** an update (D, Φ_D) which modifies \mathcal{I} to \mathcal{I}' ; **Output:** a random sample $X \sim \mu_{\mathcal{I}'}$; 1 $\mathcal{R} \leftarrow \mathsf{vbl}(D);$ **2** while $\mathcal{R} \neq \emptyset$ do $\mathbf{3} \mid (\mathbf{X}, \mathcal{R}) \leftarrow \mathsf{Local-Resample}(\mathcal{I}', \mathbf{X}, \mathcal{R});$ 4 return X;

Algorithm 2: Local-Resample($\mathcal{I}, \mathbf{X}, \mathcal{R}$)

Input : a graphical model $\mathcal{I} = (V, E, [q], \Phi)$, a configuration $\mathbf{X} \in [q]^V$ and a $\mathcal{R} \subseteq V$; **Output:** a new pair $(\mathbf{X}', \mathcal{R}')$ of configuration $\mathbf{X}' \in [q]^V$ and subset $\mathcal{R}' \subseteq V$; 1 for each $e \in E^+(\mathcal{R})$, in parallel, compute $\kappa_e \triangleq \frac{1}{\phi_e(X_e)} \min_{x \in [q]^e: x_e \cap \mathcal{R} = X_e \cap \mathcal{R}} \phi_e(x)$; 2 for each $v \in \mathcal{R}$, in parallel, resample $X_v \in [q]$ independently according to distribution ϕ_v ; **3** for each $e \in E^+(\mathcal{R})$, in parallel, sample $F_e \in \{0,1\}$ ind. with $\Pr[F_e = 0] = \kappa_e \cdot \phi_e(X_e)$; 4 $X' \leftarrow X$ and $\mathcal{R}' \leftarrow \bigcup_{e \in E: F_e = 1} e;$ 5 return (X', \mathcal{R}') .

- A dynamic sampling algorithm: [Feng, Vishnoi, Y., STOC 2019]
 - correct and efficient on dynamic data
 - parallel, distributed, communication-efficient
 - Las Vegas algorithm for perfect sampling
- Based on Partial Rejection Sampling [Guo, Jerrum, Liu, STOC 2017]
 - very different from Markov chains (random walks).

Application: **Network Reliability Estimation**

Network Reliability [Valiant 1979]

- - each edge $e \in E$ fails independently with prob. p_{ρ}
 - let $G(\vec{p})$ denote the resulting network
- (all-terminal) network reliability:

• Given an undirected graph (a network) G(V, E), and parameters $\vec{p} \in [0, 1]^E$:

Computational Complexity of Counting

- Let $A = \{a_{ij}\} \in \mathbb{R}^{n \times n}$ be a square matrix.
- **Determinant:** can be computed as fast as matrix multiplication

 $\pi \in S_n$

• Permanent: is **#P-complete** [Valiant 1979]

solvable in polynomial-time \implies the polynomial hierarchy (**PH**) collapses \implies NP=P

$$\sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{i=1}^n a_{i,\pi(i)}$$

$$\prod_{n=1}^{n} a_{i,\pi(i)}$$

Network Reliability

the probability that the network remains connected when each edge $e \in E$ fails independently with prob. p_e

- The problem is #P-complete [Valiant 1979] [Jerrum 1981]:
- **Approximation** by Monte Carlo method: return an estimation $R_{\vec{p}}(G)$

• Given an undirected graph (a network) G(V, E), and a parameter $\vec{p} \in [0, 1]^E$: (all-terminal) network reliability: $R_{\vec{p}}(G) = \sum_{n=1}^{\infty} \prod_{i=1}^{n} (1 - p_e) \prod_{i=1}^{n} p_e$ $C \subseteq E$ that $e \in C$ $e \notin C$ connects V

• $R_{\vec{p}}(G)$ cannot be evaluated precisely in polynomial time unless NP=P

 $\Pr\left|(1-\epsilon)\mathsf{R}_{\vec{p}}(G) \le \widehat{\mathsf{R}_{\vec{p}}(G)} \le (1+\epsilon)\mathsf{R}_{\vec{p}}(G)\right| \ge 1-o(1)$

Network Reliability by Sampling

• A naïve Monte Carlo estimation of network reliability $R_{\vec{p}}(G)$:

for j = 1, 2, ..., k for a large enough k: return $\frac{1}{k} \sum_{k=1}^{k} \mathbf{1} \left[G^{(j)} \text{ is connected} \right];$

- Monte Carlo method based on self-reduction:

 $G(\vec{p})$: a subgraph of G obtained by removing each $e \in E$ independently with prob. p_e

generate a $G^{(j)} \sim G(\vec{p})$ by removing each $e \in E$ independently with prob. p_e ;

• Requires too many samples $G^{(j)} \sim G(\vec{p})$ if $R_{\vec{p}}(G)$ is close to 0 (unreliable network).

• Drawing samples $C \sim G(\vec{p})$ conditioned on C being connected on V.

Network Reliability by Sampling

- Monte Carlo method based on self-reduction:
 - Drawing samples $C \sim G(\vec{p})$ conditioned on C being connected on V.

• Telescopic product: $R_{\vec{p}}(G) = \frac{R_{\vec{p}}}{R_{\vec{p}}}$

• $\frac{\mathsf{R}_{\vec{p}}(G_i)}{\mathsf{R}_{\vec{p}}(G_{i+1})}$ can be estimated by sampling $C \sim G_{i+1}(\vec{p})|$ connected.

 $G(\vec{p})$: a subgraph of G obtained by removing each $e \in E$ independently with prob. p_e

$$\frac{G_{1}}{R_{\vec{p}}(G_{0})} \cdot \frac{\mathsf{R}_{\vec{p}}(G_{1})}{\mathsf{R}_{\vec{p}}(G_{1})} \cdot \frac{\mathsf{R}_{\vec{p}}(G_{1})}{\mathsf{R}_{\vec{p}}(G_{2})} \cdot \frac{\mathsf{R}_{\vec{p}}(G_{2})}{\mathsf{R}_{\vec{p}}(G_{3})} \cdot \mathsf{R}_{\vec{p}}(G_{3})$$

Markov Chain for Connected Subgraphs

- Monte Carlo method based on self-reduction:
 - Drawing samples $C \sim G(\vec{p})$ conditioned on C being connected on V.
- A natural Markov chain (Gibbs sampler) for connected subgraphs:

start with $C_0 = E$; and for each step t = 0, 1, 2...: pick an edge $e \in E$ uniformly at random; if $C_t - \{e\}$ disconnects V then $C_{t+1} = C_t$; otherwise $C_{t+1} = \begin{cases} C_t \cup \{e\} & \text{with prob. } 1 - p_e \\ C_t - \{e\} & \text{with prob. } p_e \end{cases}$

- The chain mixes (converges) to $G(\vec{p})$ |connected in $O(m^2 \log n)$ steps.
- Conjecture: the chain mixes in $O(m \log n)$ steps.

 $G(\vec{p})$: a subgraph of G obtained by removing each $e \in E$ independently with prob. p_e

m: number of edges *n*: number of vertices

Markov Chain for Connected Subgraphs

- Monte Carlo method based on self-reduction:
 - Drawing samples $C \sim G(\vec{p})$ conditioned on C being connected on V.
- A substantially more complicated Markov chain (matroid basis exchange) for connected subgraphs:
 - Each step (matroid basis exchange) requires O(m) computation.
- The chain mixes (converges) to $G(\vec{p})$ connected in $O(m \log n)$ steps [Anari, Liu, Oveis Gharan, Vinzant, STOC 2019 best paper]
 - Strongly log-concave distribution and high-dimension expander (HDX)
- Markov chain comparison \implies the Gibbs sampler mixes in $O(m^2 \log n)$ steps

 $G(\vec{p})$: a subgraph of G obtained by removing each $e \in E$ independently with prob. p_e

Markov Chain for Connected Subgraphs

- Monte Carlo method based on self-reduction:
 - Drawing samples $C \sim G(\vec{p})$ conditioned on C being connected on V.
- The Gibbs sampler converges in $O(m^2 \log n)$ steps.
- The matroid basis exchange chain converges in $O(m \log n)$ steps [Anari, Liu, Oveis Gharan, Vinzant, STOC 2019 best paper]
 - Each step (matroid basis exchange) requires O(m) computation.
- Fastest estimation of network reliability runs in $O(mn^2 \log n)$ [Guo, He, 2020]
 - based on an ingenious reduction to sampling root-connected subgraph via partial rejection sampling [Guo, Jerrum, Liu, '17] / dynamic sampling [Feng, Nisheeth, Y. '19]

 $G(\vec{p})$: a subgraph of G obtained by removing each $e \in E$ independently with prob. p_e

Network Reliability Estimation

• Given an undirected graph (a network) G(V, E), and a parameter $\vec{p} \in [0, 1]^E$: (all-terminal) network reliability: $R_{\vec{p}}(G) = \sum (1 - p_e) p_e$ $C \subseteq E$ that $e \in C$ $e \notin C$ connects V

> the probability that the network remains connected when each edge $e \in E$ fails independently with prob. p_e

- Precisely evaluating $R_{\vec{p}}(G)$ is **#P-complete**
- Approximation by Monte Carlo method in $\tilde{O}(mn^2)$ time
- Open problems:
 - estimating network reliability in $\tilde{O}(mn)$ time or less
 - network algorithms for network reliability (on going project ...)

Computational Phase Transition of Sampling

Application: Network Reliability Estimation

Network Algorithms for Gibbs Sampling

- [Chen, Feng, Y., Zhang '22]: Optimal mixing for two-state anti-ferromagnetic spin systems. FOCS '22.
- [He, Wang, Y. '22]: Sampling Lovász local lemma for general constraint satisfaction solutions in near-linear time. FOCS '22.
- [Liu, Y. '22]: Simple parallel algorithms for single-site dynamics. STOC '22.
- [Chen, Feng, Y., Zhang '21]: Rapid mixing of Glauber dynamics via spectral independence for all degrees. FOCS '21.
- [Feng, He, Y. '21]: Sampling constraint satisfaction solutions in the local lemma regime. STOC '21.
- [Feng, Hayes, Y. '21]: Distributed Metropolis sampler with optimal parallelism. SODA '21.
- [Feng, Guo, Y., Zhang '20]: Fast sampling and counting k-SAT solutions in the local lemma regime. STOC '20. JACM '21.
- [Feng, Vishnoi, Y. '19]: Dynamic sampling from graphical models. STOC '19. SICOMP '21.
- [Feng, Y. '18]: On local distributed sampling and counting. PODC '18.
- [Feng, Sun, Y. '17]: What can be sampled locally? PODC '17.

