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Sampling in High-Dimensional Space

• One of the earliest computer programs (nuclear Monte Carlo simulations on ENIAC)

Given an -dimensional joint distribution ,

draw a sample .

n μ
X = (X1, X2, …, Xn) ∼ μ



Sampling in High-Dimensional Space

• One of the earliest computer programs (nuclear Monte Carlo simulations on ENIAC)


• Crucial for today’s computational tasks:


• Probabilistic inference:  guessing possible values of  given values of 


• Optimization via sampling:  finding  with max  by drawing  


• High-dimensional integration:  calculating         or estimating volumes


• Statistical physics:  simulating interacting particle systems


• Approximate counting:  e.g. estimating Network Reliability

Xi XS

x μ(x) X ∼ μ

Given an -dimensional joint distribution ,

draw a sample .

n μ
X = (X1, X2, …, Xn) ∼ μ

∫ℝn



Gibbs Distribution
• High-dimensional distribution  described by local constraints: 

•  variables on finite discrete domain 


• a set  of local constraints  with scope  and 


:       


• For hard constraints , the  is uniform distribution over 
constraint satisfaction solutions 

• Examples of Gibbs distributions: graphical model, Bayesian network, Boltzmann 
machine, Markov random field, factor graph, spin system, weighted CSP, …

μ

n Ω

𝒞 ( f, S) S ⊆ [n] f : ΩS → [0,1]

∀x ∈ Ωn μ(x) ∝ ∏
( f,S)∈𝒞

f(xS)

f : ΩS → {0,1} μ



Gibbs Sampler
(a.k.a. Glauber dynamics, heat-bath dynamics)  [Glauber 1963]

the Markov chain maintains an ;  at each step:


• pick an  uniformly at random;


• update  randomly according to the marginal distribution ;

x ∈ Ωn

v ∈ {1,2,…, n}
xv μv( ⋅ ∣ xN(v))

Random walk

in Ωn



Gibbs Sampler
(a.k.a. Glauber dynamics, heat-bath dynamics)  [Glauber 1963]

• The Gibbs sampler converges (mixes) to .

• Many other Markov chains converge to , e.g. the Metropolis algorithm [Metropolis 1953]


• The convergence rate (mixing time) depends on properties of .





• What makes a family of distributions easy/hard to sample?    New algorithms?

μ
μ

μ
Tmix = max

x
min {t ≥ 1 ∣ ∥Pt(x, ⋅ ) − μ∥1 ≤ 1/e}

the Markov chain maintains an ;  at each step:


• pick an  uniformly at random;


• update  randomly according to the marginal distribution ;

x ∈ Ωn

v ∈ {1,2,…, n}
xv μv( ⋅ ∣ xN(v))



Outline

• Computational Phase Transition of Sampling 

• Phase transition of probabilistic graphical models


• Phase transition of sampling constraint satisfaction solutions                   
(a.k.a. a sampling Lovász local lemma)


• Network Algorithms for Gibbs Sampling 

• Parallel/Distributed/Dynamic sampling algorithms


• Application:  Network Reliability Estimation



Computational Phase Transition 
of Sampling



Computational Phase Transition

• Gibbs distribution:  
:          

• locally constrained random variables  locally interacting particle states 


• Continuous change of strength of local interaction  sharp transition of global state 

(state of matter / computational complexity)

∀x ∈ Ωn μ(x) ∝ ∏
( f,S)∈𝒞

f(xS)

⟺

⟹

P

NPPhysical  
Phase Transition

Computational 
Complexity

For Gibbs

Sampling



Hardcore Model
• Given a graph  and a parameter :


 independent set  of :        




• Critical threshold (for phase transition of hardcore gas with fugacity  on -degree Bethe lattice):





•   sampling is NP-hard [Sly, FOCS 2010 best paper] 

• :

           optimal

G(V, E) λ > 0
∀ I ⊆ V G

μ(I) ∝ λ|I|

λ Δ

λc(Δ) ≜
(Δ − 1)Δ−1

(Δ − 2)Δ
≈

e
Δ − 2

λ > λc(Δ) ⟹
λ < λc(Δ)

nO(log Δ) ⟶ nf(λ) ⟶ ΔO(Δ2)n log n ⟶ O(n2 log n) ⟶ O(n log n)

Gibbs sampler:

maintain an independent set :


• pick an  uniformly at random;

• if  is independent set then


I ⊆ V
v ∈ V

I ∪ {v}

I ←
I ∪ {v} with prob.  λ

1 + λ

I∖{v} with prob.  1
1 + λ

[Weitz  
STOC ’07]

[Anari, Liu, Oveis Gharan  
FOCS ’20]

[Chen, Liu, Vigoda  
STOC ’21]

[Chen, Feng, Y., Zhang  
FOCS ’21]

[Chen, Feng, Y., Zhang, FOCS ’22] 
[Chen, Eldan, FOCS ’22]

Gibbs sampler

for all Gibbs distributions with pairwise repulsive constraints on Boolean variables (anti-ferromagnetic two-state spin systems)

strong spatial mixing (SSM) 
high-dimensional expander (HDX) 

local-to-global argument 
modified log-Sobolev inequality 

field dynamics 
… … 



Constraint Satisfaction Solutions
• For hard constraints (Boolean decisions)  


:       


 is the uniform distribution over all constraint satisfaction solutions 


• Example: k-SAT with variable degree 


CNF formula 


• Barrier: classic sampling algorithms rely on connectivity of solution space

f : ΩS → {0,1}

∀x ∈ Ωn μ(x) ∝ ∏
( f,S)∈𝒞

f(xS)

μ
d

(x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x3 ∨ ¬x4 ∨ ¬x5)

Satisfying solution exists when  
(Lovász local lemma)

k ≳ log d

Sampling?



Overcome the Connectivity Barrier

• Efficiently construct a “good” subspace :

• Gibbs sampler for  is fast-convergent (the subspace is well-connected) and efficient to implement


• it is efficient to extend a random partial solution  to a uniform satisfying solution 


• Fast sampler in near-linear time (under Lovász local lemma like condition):

• SAT [Feng, Guo, Y., Zhang, STOC 2020] 
• CSP with atomic constraints [Feng, He, Y., STOC 2021] 
• general CSP (constraint satisfaction problem) [He, Wang, Y., FOCS 2022]

U ⊆ V
μU

xU ∼ μU x ∼ μ

Projected Markov chain:


Properly construct a subset  of variables;


Sample  by simulating Gibbs sampler on ;


Extend  to a satisfying solution ;

U ⊆ V
xU ∼ μU μU

xU x ∼ μ Idea: project onto lower dimension 
to improve connectivity



Network Algorithms  
for Gibbs Sampling



Distributed Gibbs Sampling

• Generate high-dimensional sample in a network: 

• Each node  generates a random 


• Altogether it follows the correct joint distribution 


v ∈ {1,2,…, n} Xv

X = (X1, X2, …, Xn) ∼ μ



Distributed Gibbs Sampling

• Classic sampling algorithms are intrinsically sequential.


• Barrier for parallelization: update of variable depends on neighbors’ states

• concurrent updates of adjacent variables  fault


• correct parallelization:  overhead!


• Is it possible to correctly parallelize the Markov chain with linear speedup? 

⟹
O(Δ)

Gibbs sampler for : 


maintain an ,  at each step:


• pick a random ;


• update  according to ;

μ
x ∈ Ωn

v ∈ {1,2,…, n}
xv μv( ⋅ ∣ xN(v))

Generate high-dimensional samples 
in a network:

xv xu

x′ v x′ u



Distributed Gibbs Sampling

• Is it possible to correctly parallelize the Markov chain with linear speedup?  
• a parallel chain called LocalMetropolis [Feng, Sun, Y., PODC 2017]


• sampling by network decomposition [Feng, Y., PODC 2018] 


• parallelize Metropolis algorithm [Feng, Hayes, Y., SODA 2021]

Gibbs sampler for : 


maintain an ,  at each step:


• pick a random ;


• update  according to ;

μ
x ∈ Ωn

v ∈ {1,2,…, n}
xv μv( ⋅ ∣ xN(v))

Generate high-dimensional samples 
in a network:

xv xu

x′ v x′ u



An Idealized Parallel “Sampling Algorithm”

• This is the original definition of Gibbs sampler [Glauber 1963].


• An idealized (continuous-time with atomic update operation) process that 
models the evolution of physical world.


• Simulate this idealized process on computer network with no overhead?

Continuous-time Gibbs sampler for : 


each  holds a Poisson clock;

when the clock at  rings:


• update  according to ;

μ
v ∈ {1,2,…, n}

v
xv μv( ⋅ ∣ xN(v))

ring!

atomic

operation

 continuous-time duration   discrete-time stepsO(T) ⟺ O(nT)



Parallelize the Gibbs Sampler

• Ideas:

• Construct a dynamical system whose fixpoint corresponds to the correct evolution of the chain.


• Simulate this dynamical system by a locally-iterative message passing algorithm on the network.


• A universal coupling of random bits used in different iterations to ensure fast stabilization to fixpoint.


• A much weakened Dobrushin’s condition (which is almost always satisfied)      
 faithful parallel simulation of Gibbs sampler with linear speedup [Liu, Y., STOC 2022]⟹

Continuous-time Gibbs sampler for : 


each  holds a Poisson clock;

when the clock at  rings:


• update  according to ;

μ

v ∈ {1,2,…, n}
v

xv μv( ⋅ ∣ xN(v))

(all single-site dynamics)

[Glauber 1963]



                                X ∼ μ X′ ∼ μ′ 

dynamic update

with incremental cost

Dynamic Sampling

• Sampling/inference tasks on dynamically changing data:

• Online data, data streams, network environment, etc.


• Dynamically changing graphical models generated in:

• Locally-iterative algorithms for learning.


• Self-reduction procedure in approximate counting.


• Algorithmic Lipschitz: transform  to  with cost proportional to X ∼ μ X′ ∼ μ′ diff(μ, μ′ )

Dynamic Sampling problem:   for a dynamically changing graphical model μ → μ′ 

Classic random walks 
fail on dynamic data



                                X ∼ μ X′ ∼ μ′ 

dynamic update

with incremental cost

Dynamic Sampling
Dynamic Sampling problem:   for a dynamically changing graphical model μ → μ′ 

• A dynamic sampling algorithm: 

[Feng, Vishnoi, Y., STOC 2019]

• correct and efficient on dynamic data


• parallel, distributed, communication-efficient 

• Las Vegas algorithm for perfect sampling 


• Based on Partial Rejection Sampling           
[Guo, Jerrum, Liu, STOC 2017] 

• very different from Markov chains 
(random walks).



Application:  
Network Reliability Estimation



• Given an undirected graph (a network) , and parameters :


• each edge  fails independently with prob. 


• let  denote the resulting network


• (all-terminal) network reliability:


the probability that  is connected


 

G(V, E) ⃗p ∈ [0,1]E

e ∈ E pe

G( ⃗p)

G( ⃗p)

R ⃗p(G) = ∑
C ⊆ E that
connects V

∏
e∈C

(1 − pe)∏
e∉C

pe

Network Reliability
[Valiant 1979]

enumerating all 
connected subgraphs

s t
p1

p2

p3

p4

p5



Computational Complexity of Counting
• Let  be a square matrix.


• Determinant: can be computed as fast as matrix multiplication





• Permanent: is #P-complete [Valiant 1979]





solvable in polynomial-time    the polynomial hierarchy (PH) collapses  

                                                    NP=P

A = {aij} ∈ ℝn×n

∑
π∈Sn

sgn(π)
n

∏
i=1

ai,π(i)

∑
π∈Sn

n

∏
i=1

ai,π(i)

⟹
⟹



Network Reliability
• Given an undirected graph (a network) , and a parameter :


(all-terminal) network reliability: 


the probability that the network remains connected 

when each edge  fails independently with prob. 


• The problem is #P-complete [Valiant 1979] [Jerrum 1981]:


•  cannot be evaluated precisely in polynomial time unless NP=P


• Approximation by Monte Carlo method: return an estimation 


G(V, E) ⃗p ∈ [0,1]E

R ⃗p(G) = ∑
C ⊆ E that
connects V

∏
e∈C

(1 − pe)∏
e∉C

pe

e ∈ E pe

R ⃗p(G)

̂R ⃗p(G)
Pr [(1 − ϵ)R ⃗p(G) ≤ ̂R ⃗p(G) ≤ (1 + ϵ)R ⃗p(G)] ≥ 1 − o(1)



Network Reliability by Sampling
: a subgraph of  obtained by removing each  independently with prob. 


• A naïve Monte Carlo estimation of network reliability :

for  for a large enough :


generate a  by removing each  independently with prob. ;


return ; 


• Requires too many samples  if  is close to 0 (unreliable network).


• Monte Carlo method based on self-reduction:


• Drawing samples  conditioned on  being connected on .

G( ⃗p) G e ∈ E pe

R ⃗p(G)
j = 1,2,…, k k

G( j) ∼ G( ⃗p) e ∈ E pe
1
k

k

∑
i=1

1 [G( j) is connected]

G( j) ∼ G( ⃗p) R ⃗p(G)

C ∼ G( ⃗p) C V



Network Reliability by Sampling
: a subgraph of  obtained by removing each  independently with prob. 


• Monte Carlo method based on self-reduction:


• Drawing samples  conditioned on  being connected on .


• Edge-contraction:


• Telescopic product:    


•  can be estimated by sampling |connected.

G( ⃗p) G e ∈ E pe

C ∼ G( ⃗p) C V

R ⃗p(G) =
R ⃗p(G0)
R ⃗p(G1)

⋅
R ⃗p(G1)
R ⃗p(G2)

⋅
R ⃗p(G2)
R ⃗p(G3)

⋅ R ⃗p(G3)

R ⃗p(Gi)
R ⃗p(Gi+1)

C ∼ Gi+1( ⃗p)

G0 = G G1 G2 G3



Markov Chain for Connected Subgraphs

:  number of edges

:  number of vertices

m
n

: a subgraph of  obtained by removing each  independently with prob. 


• Monte Carlo method based on self-reduction:


• Drawing samples  conditioned on  being connected on .


• A natural Markov chain (Gibbs sampler) for connected subgraphs:

start with ;  and for each step :


pick an edge  uniformly at random;

if  disconnects  then ; otherwise





• The chain mixes (converges) to |connected in  steps. 


• Conjecture: the chain mixes in  steps.

G( ⃗p) G e ∈ E pe

C ∼ G( ⃗p) C V

C0 = E t = 0,1,2…
e ∈ E

Ct − {e} V Ct+1 = Ct

Ct+1 = {Ct ∪ {e} with prob. 1 − pe

Ct − {e} with prob. pe

G( ⃗p) O(m2 log n)
O(m log n)



Markov Chain for Connected Subgraphs
: a subgraph of  obtained by removing each  independently with prob. 


• Monte Carlo method based on self-reduction:


• Drawing samples  conditioned on  being connected on .


• A substantially more complicated Markov chain (matroid basis exchange)    
for connected subgraphs:


• Each step (matroid basis exchange) requires  computation.


• The chain mixes (converges) to |connected in  steps     
[Anari, Liu, Oveis Gharan, Vinzant, STOC 2019 best paper] 

• Strongly log-concave distribution and high-dimension expander (HDX)


• Markov chain comparison  the Gibbs sampler mixes in  steps

G( ⃗p) G e ∈ E pe

C ∼ G( ⃗p) C V

O(m)
G( ⃗p) O(m log n)

⟹ O(m2 log n)



Markov Chain for Connected Subgraphs



cost

× O(n)

: a subgraph of  obtained by removing each  independently with prob. 


• Monte Carlo method based on self-reduction:


• Drawing samples  conditioned on  being connected on .


• The Gibbs sampler converges in  steps. 


• The matroid basis exchange chain converges in  steps         
[Anari, Liu, Oveis Gharan, Vinzant, STOC 2019 best paper] 


• Each step (matroid basis exchange) requires  computation.


• Fastest estimation of network reliability runs in  [Guo, He, 2020] 
• based on an ingenious reduction to sampling root-connected subgraph                                         

via partial rejection sampling [Guo, Jerrum, Liu, ’17] / dynamic sampling [Feng, Nisheeth, Y. ’19]

G( ⃗p) G e ∈ E pe

C ∼ G( ⃗p) C V

O(m2 log n)
O(m log n)

O(m)
O(mn2 log n)



Network Reliability Estimation
• Given an undirected graph (a network) , and a parameter :


(all-terminal) network reliability: 


the probability that the network remains connected 

when each edge  fails independently with prob. 


• Precisely evaluating  is #P-complete


• Approximation by Monte Carlo method in  time


• Open problems: 

• estimating network reliability in  time or less

• network algorithms for network reliability (on going project …)

G(V, E) ⃗p ∈ [0,1]E

R ⃗p(G) = ∑
C ⊆ E that
connects V

∏
e∈C

(1 − pe)∏
e∉C

pe

e ∈ E pe

R ⃗p(G)

Õ(mn2)

Õ(mn)



Network Algorithms  
for Gibbs Sampling

Computational Phase Transition 
of Sampling

Application:  
Network Reliability Estimation
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