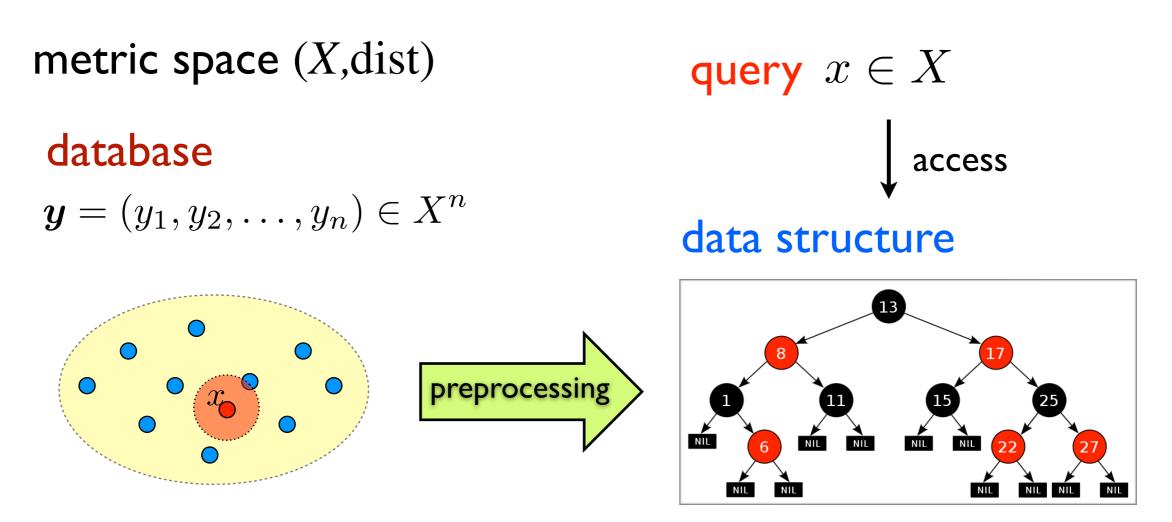
Simple Average-case Lower Bounds for Approximate Near-Neighbor from Isoperimetric Inequalities

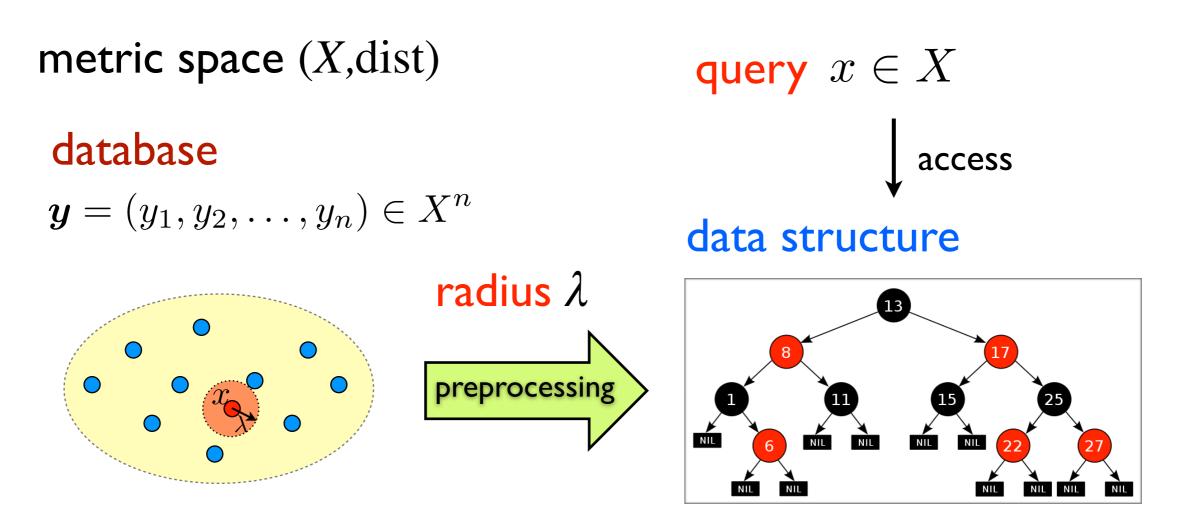
> Yitong Yin Nanjing University

Nearest Neighbor Search (NNS)



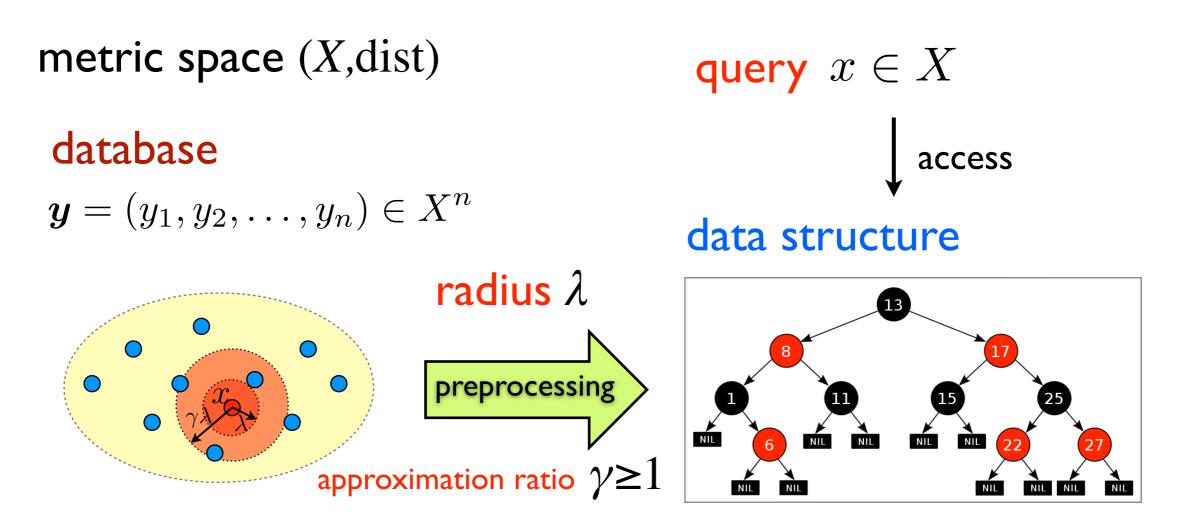
output: database point y_i closest to the query point x**applications**: database, pattern matching, machine learning, ...

Near Neighbor Problem (λ -NN)



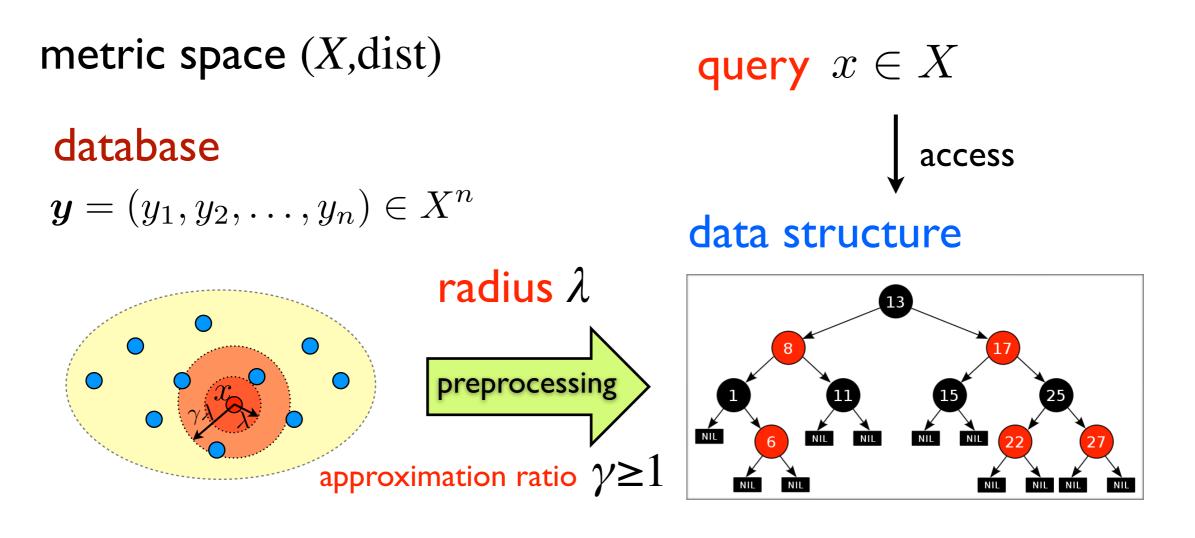
 λ -NN: answer "yes" if $\exists y_i$ that is $\leq \lambda$ -close to x"no" if all y_i are $>\lambda$ -faraway from x

Approximate Near Neighbor (ANN)



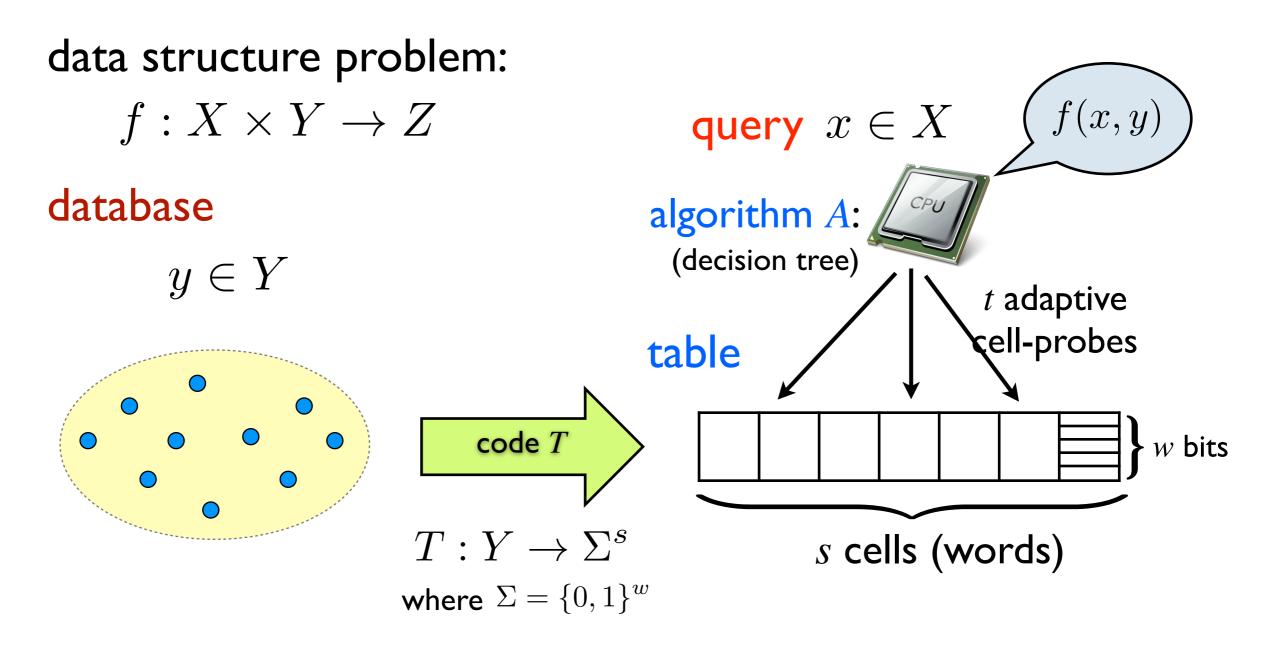
(γ , λ)-ANN: answer "yes" if $\exists y_i$ that is $\leq \lambda$ -close to x"no" if all y_i are $>\gamma\lambda$ -faraway from xarbitrary if otherwise

Approximate Near Neighbor (ANN)



Hamming space $X = \{0, 1\}^d$ $\operatorname{dist}(x, z) = ||x - z||_1$ $100 \log n < d < n^{o(1)}$ Hamming distance Curse of dimensionality!

Cell-Probe Model



protocol: the pair (A, T)(*s*, *w*, *t*)-cell-probing scheme

Near-Neighbor Lower Bounds

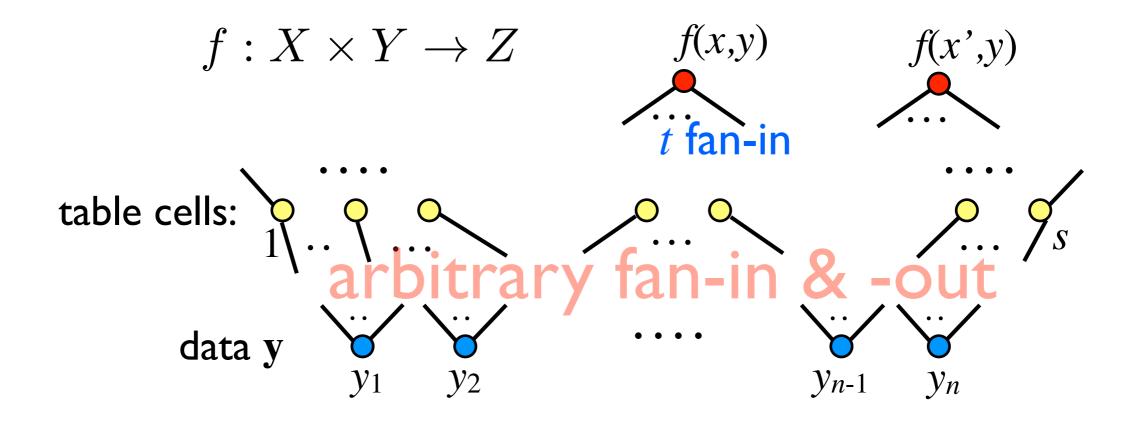
Hamming space $X = \{0, 1\}^d$ database for size ntime: t cell-probes; line pase cells, for w bits

Approximate Near-Neighbor (ANN)		Randomized <i>Exact</i> Near-Neighbor
Deterministic	Randomized	(RENN)
$t = \Omega\left(\frac{d}{\log s}\right)$	t = O(1)	$t = \Omega\left(\frac{d}{\log s}\right)$
[Miltersen <i>et al.</i> 1995] [Liu 2004]	for $s = poly(n)$ [Chakrabarti Regev 2004]	[Borodin Ostrovsky Rabani 1999] [Barkol Rabani 2000]
$t \equiv \Omega\left(\frac{\operatorname{ldg} n}{\operatorname{log} \operatorname{fgg} n}\right)$	$t = \Omega\left(\frac{\log n}{\log \log n}\right)$	$t = \Omega\left(\!\!\left(\frac{\operatorname{log} n}{\operatorname{logg}\frac{4W}{n}g_n}\right)\right)$
[Pătrașcu Thorup 2006] $t = \Omega\left(\frac{1}{\log g}\right)$	[Panigrahy Talwar Wieder	[Pătraşcu Thorup 2006]
[Wang Y. 2014]	2008, 2010]	

• matches the highest known lower bounds for any data structure problems: Polynomial Evaluation [Larsen'12], ball-inheritance (range reporting) [Grønlund, Larsen'16]

Why are data structure lower bounds so difficult?

- (Observed by [Miltersen et al. 1995]) An ω(log n) cell-probe lower bound on polynomial space for any function in P would prove P ⊈ linear-time poly-size Boolean branching programs.
 (Solved in [Ajtai 1999])
- (Observed by [Brody, Larsen 2012]) Even non-adaptive data structures are circuits with arbitrary gates of depth 2:



Near-Neighbor Lower Bounds

Hamming space $X = \{0, 1\}^d$ database size: n

time: t cell-probes; space: s cells, each of w bits

Approximate Near-Neighbor (ANN)		Randomized <i>Exact</i> Near-Neighbor
Deterministic	Randomized	(RENN)
$t = \Omega\left(\frac{d}{\log s}\right)$ [Miltersen <i>et al.</i> 1995] [Liu 2004] $t = \Omega\left(\frac{d}{\log \frac{sw}{n}}\right)$ [Pătraşcu Thorup 2006]	$t = \Omega\left(\frac{\log n}{\log \frac{sw}{n}}\right)$	$t = \Omega\left(\frac{d}{\log s}\right)$ [Borodin Ostrovsky Rabani 1999] [Barkol Rabani 2000] $t = \Omega\left(\frac{d}{\log \frac{sw}{n}}\right)$ [Pătraşcu Thorup 2006]
$t = \Omega\left(\frac{d}{\log \frac{sw}{nd}}\right)$ [Wang Y. 2014]	[Panigrahy Talwar Wieder 2008, 2010]	

- Hard distribution: [Barkol Rabani 2000] [Liu 2004] [PTW'08 '10]
 - database: $y_1, \dots, y_n \in \{0, 1\}^d$ i.i.d. uniform
 - query: uniform and independent $x \in \{0,1\}^d$
- *Expected* cell-probe complexity:
 - $\mathbf{E}_{(x,y)}$ [# of cell-probes to resolve query *x* on database *y*]
- "Curse of dimensionality" should hold on average.
- In *data-dependent* LSH [Andoni Razenshteyn 2015]: a key step is to solve the problem on random input.

Hamming space $X = \{0, 1\}^d$ database size: *n* time: *t* cell-probes; space: *s* cells, each of *w* bits

Approximate Near-Neighbor (ANN)		Randomized <i>Exact</i> Near-Neighbor
Deterministic	Randomized	(RENN)
$t = \Omega\left(\frac{d}{\log s}\right)$ [Miltersen <i>et al.</i> 1995] [Liu 2004] $t = \Omega\left(\frac{d}{\log \frac{sw}{n}}\right)$ [Pătraşcu Thorup 2006] $t = \Omega\left(\frac{d}{\log \frac{sw}{nd}}\right)$ [Wang Y. 2014]	$t = \Omega\left(\frac{\log n}{\log \frac{sw}{n}}\right)$ [Panigrahy Talwar Wieder 2008, 2010]	$t = \Omega\left(\frac{d}{\log s}\right)$ [Borodin Ostrovsky Rabani 1999] [Barkol Rabani 2000] $t = \Omega\left(\frac{d}{\log \frac{sw}{n}}\right)$ [Pătraşcu Thorup 2006]

Hamming space $X = \{0, 1\}^d$ database size: *n* time: *t* cell-probes; space: *s* cells, each of *w* bits

Approximate Near-Neighbor (ANN)		Randomized <i>Exact</i> Near-Neighbor
Deterministic	Randomized	(RENN)
$t = \Omega\left(\frac{d}{\log s}\right)$ [Miltersen <i>et al.</i> 1995] [Liu 2004] our result: $t = \Omega\left(\frac{d}{\log \frac{sw}{nd}}\right)$	$t = \Omega\left(\frac{\log n}{\log \frac{sw}{n}}\right)$ [Panigrahy Talwar Wieder 2008, 2010]	$t = \Omega\left(\frac{d}{\log s}\right)$ [Borodin Ostrovsky Rabani 1999] [Barkol Rabani 2000]

Metric Expansion

[Panigrahy Talwar Wieder 2010]

metric space (X,dist)

 $\begin{array}{l} \lambda \text{-neighborhood: } \forall x \in X, \ N_{\lambda}(x) = \{z \in X \mid \text{dist}(x, z) \leq \lambda\} \\ \forall A \subseteq X, \ N_{\lambda}(A) = \{z \in X \mid \exists x \in A \text{ s.t. } \text{dist}(x, z) \leq \lambda\} \end{array}$

probability distribution μ over X

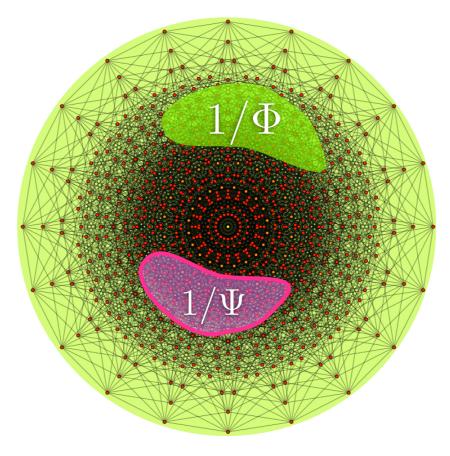
- λ -neighborhoods are weakly independent under μ : $\forall x \in X, \ \mu(N_{\lambda}(x)) < 0.99/n$
- λ -neighborhoods are (Φ, Ψ) -expanding under μ : $\forall A \subseteq X, \ \mu(A) \ge 1/\Phi \Rightarrow \mu(N_{\lambda}(A)) \ge 1-1/\Psi$

Metric Expansion

[Panigrahy Talwar Wieder 2010]

metric space (X,dist) probability distribution μ over X

• λ -neighborhoods are (Φ, Ψ) -expanding under μ : $\forall A \subseteq X, \ \mu(A) \ge 1/\Phi \Rightarrow \mu(N_{\lambda}(A)) \ge 1-1/\Psi$



vertex expansion, "blow-up" effect

Main Theorem:

For (γ, λ) -ANN in metric space (X,dist) where

- $\gamma\lambda$ -neighborhoods are weakly independent under μ : $\mu(N_{\gamma\lambda}(x)) < 0.99/n$ for $\forall x \in X$
- λ -neighborhoods are (Φ, Ψ) -expanding under μ : $\forall A \subseteq X$ that $\mu(A) \ge 1/\Phi \Rightarrow \mu(N_{\lambda}(A)) \ge 1-1/\Psi$

 \forall deterministic algorithm that makes *t* cell-probes in expectation on a table of size *s* cells, each of *w* bits (assuming *w*+log *s* < *n* / log Φ), under the input distribution:

database $y=(y_1, y_2, ..., y_n)$ where $y_1, y_2, ..., y_n \sim \mu$, i.i.d. query $x \sim \mu$, independently

$$t = \Omega\left(\frac{\log \Phi}{\log \frac{sw}{n\log \Psi}}\right)$$

Main Theorem:

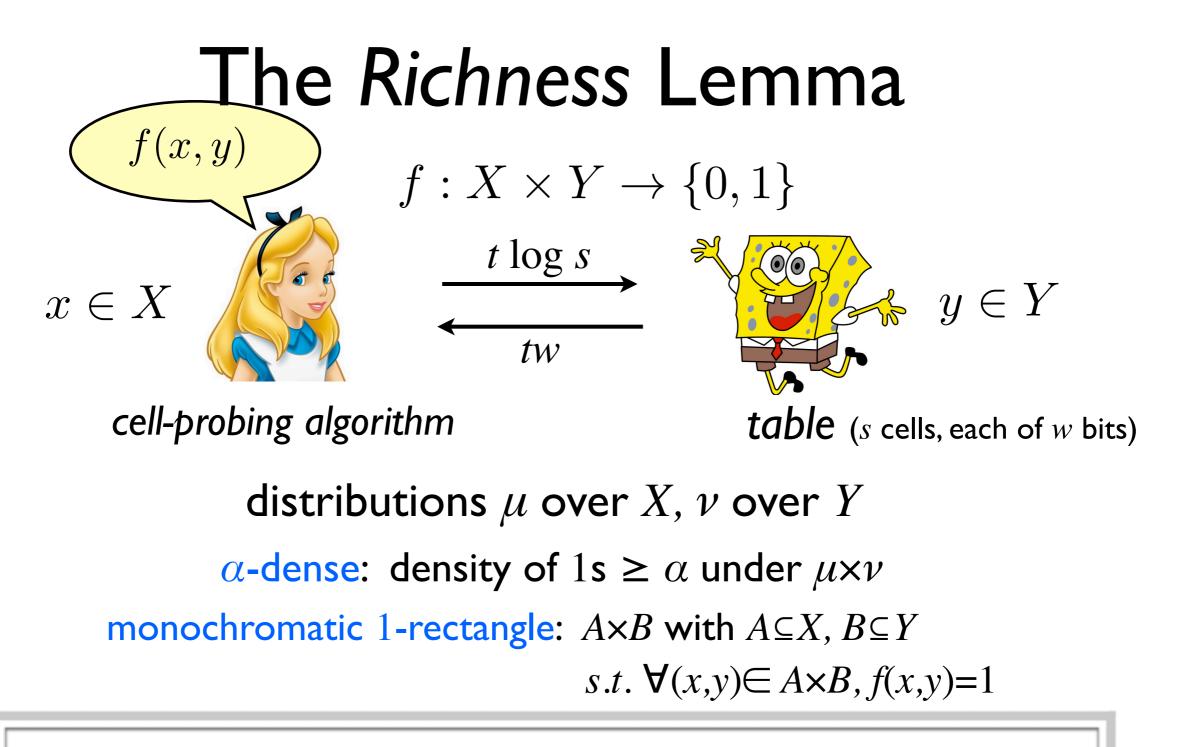
For (γ, λ) -ANN in metric space (X,dist) where

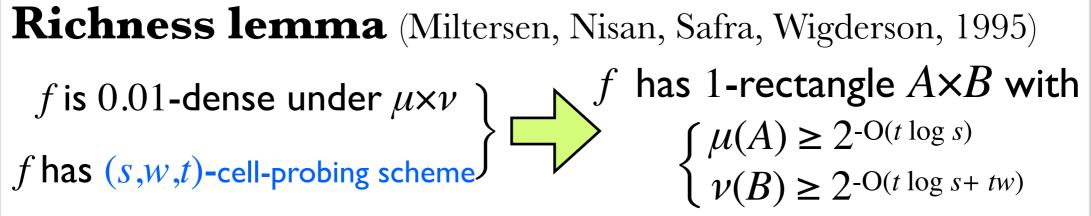
- $\gamma\lambda$ -neighborhoods are weakly independent under μ : $\mu(N_{\gamma\lambda}(x)) < 0.99/n$ for $\forall x \in X$
- λ -neighborhoods are (Φ, Ψ) -expanding under μ : $\forall A \subseteq X$ that $\mu(A) \ge 1/\Phi \Rightarrow \mu(N_{\lambda}(A)) \ge 1-1/\Psi$

 \forall deterministic algorithm that makes *t* cell-probes in expectation on a table of size *s* cells, each of *w* bits (assuming *w*+log *s* < *n* / log Φ), under the input distribution:

database $y=(y_1, y_2, ..., y_n)$ where $y_1, y_2, ..., y_n \sim \mu$, i.i.d. query $x \sim \mu$, independently

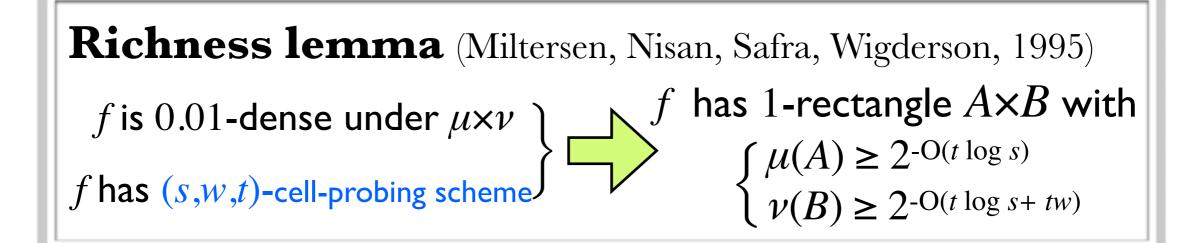
$$t = \Omega\left(\frac{\log\Phi}{\log\frac{sw}{n\log\Psi}}\right)$$

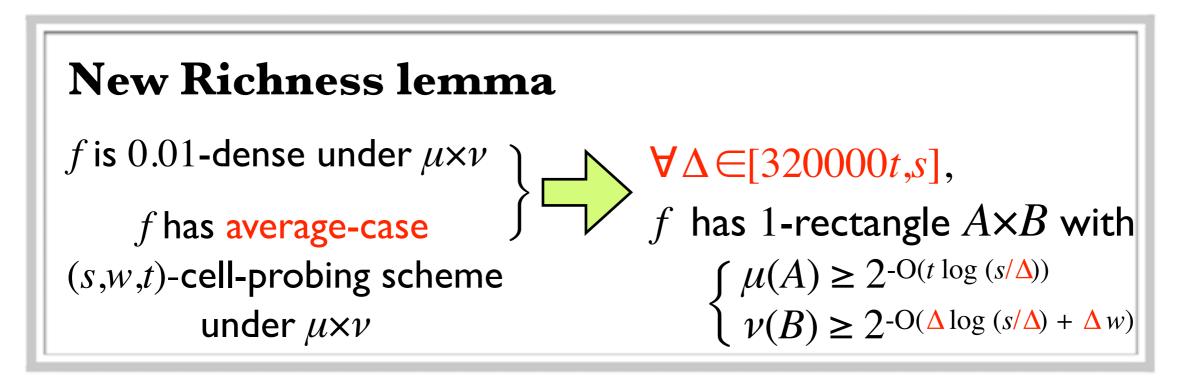




A New Richness Lemma

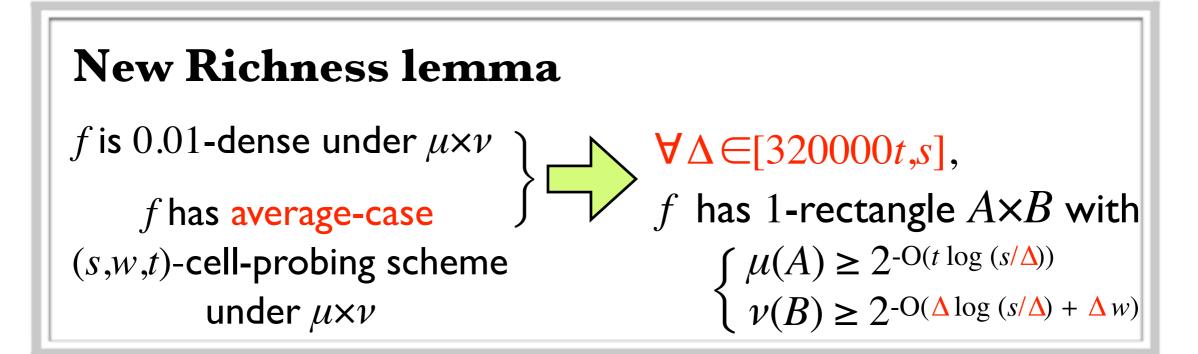
 $f: X \times Y \rightarrow \{0, 1\}$ distributions μ over X, ν over Y





when $\Delta = O(t)$, it becomes the richness lemma (with slightly better bounds)

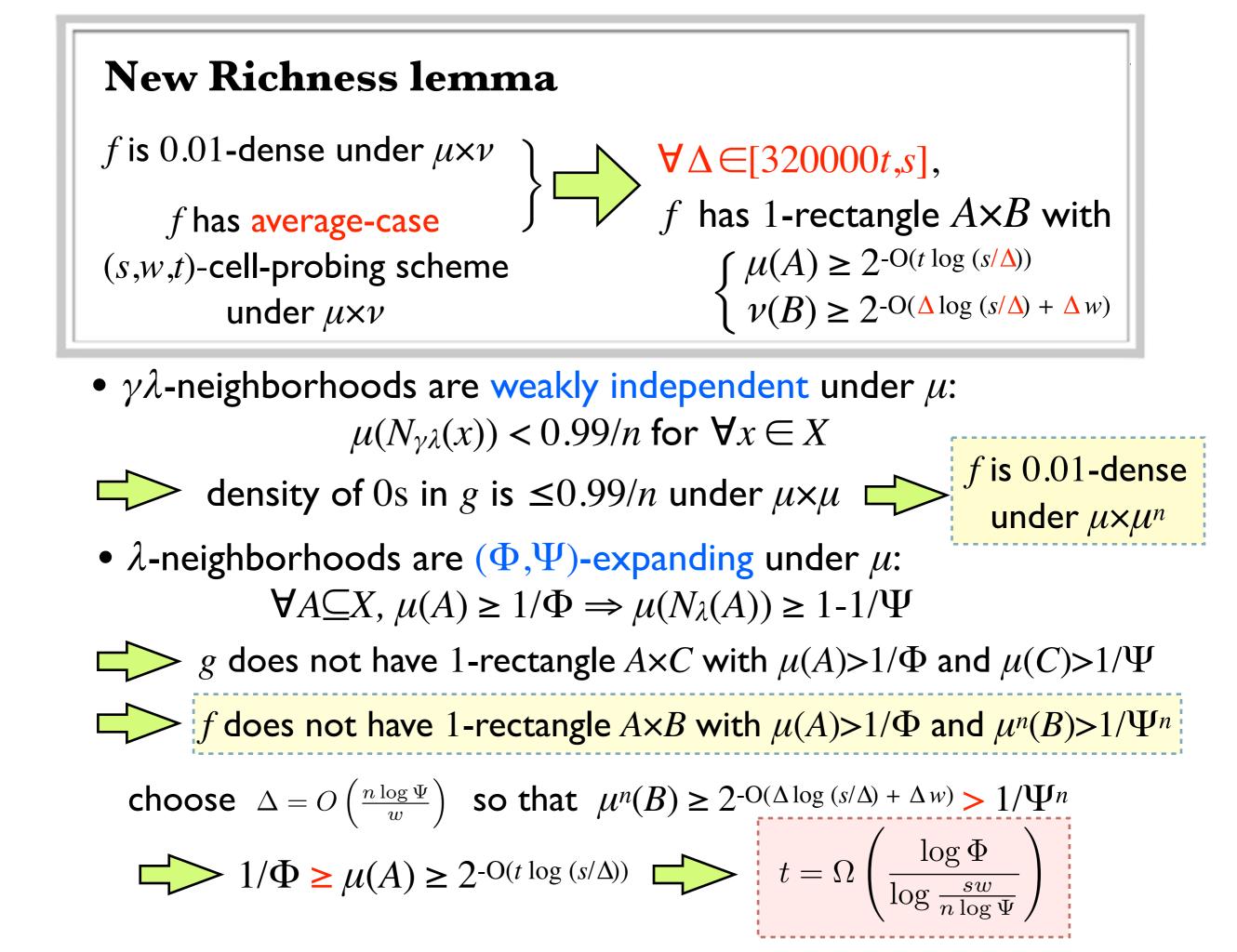
$$f: X \times Y \rightarrow \{0, 1\}$$
 distributions μ over X , ν over Y

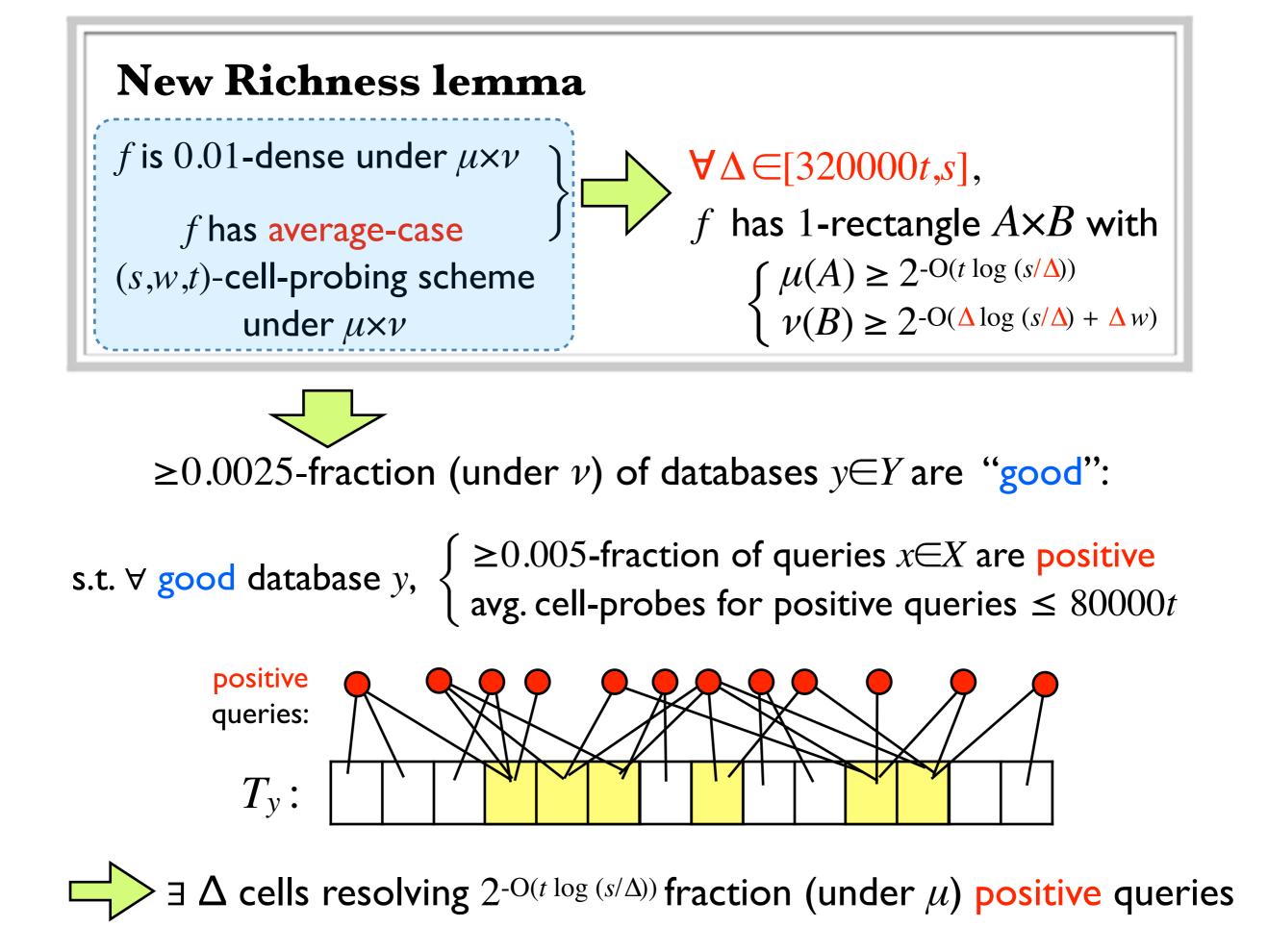


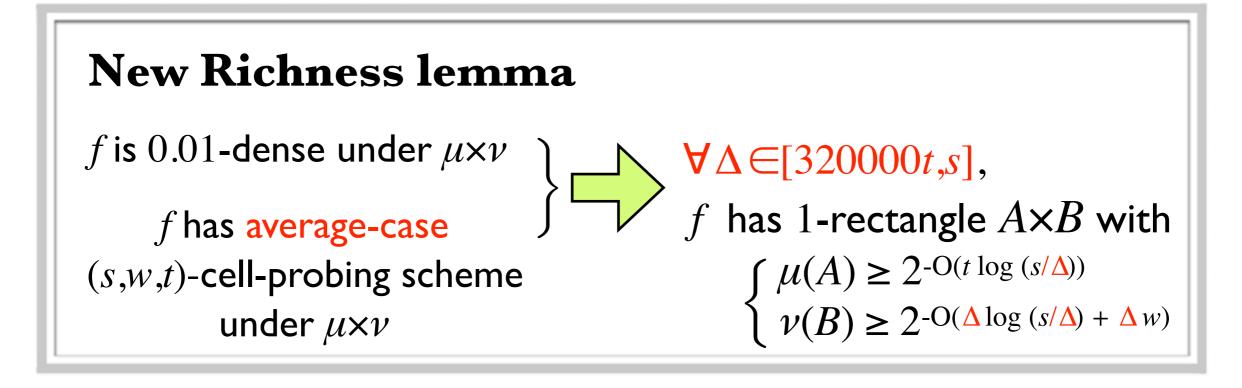
metric space (X,dist), query $x \in X$, database $y = (y_1, \dots, y_n) \in X_n$

$$\neg(\gamma, \lambda)\text{-ANN:} \quad f(x, y) = \bigwedge_{i=1}^{n} g(x, y_i)$$
where
$$g(x, y_i) = \begin{cases} 1 & \operatorname{dist}(x, y_i) > \gamma\lambda \\ 0 & \operatorname{dist}(x, y_i) \leq \lambda \\ * & \operatorname{otherwise} \end{cases}$$

Other examples: partial match, membership, range query, ...







 ≥ 0.0025 -fraction (under ν) of databases $y \in Y$ are "good":

s.t. \forall good database y,

 T_y

 $\exists \Delta \text{ cells resolving } 2^{-O(t \log (s/\Delta))} \text{ fraction (under } \mu) \text{ positive queries}$

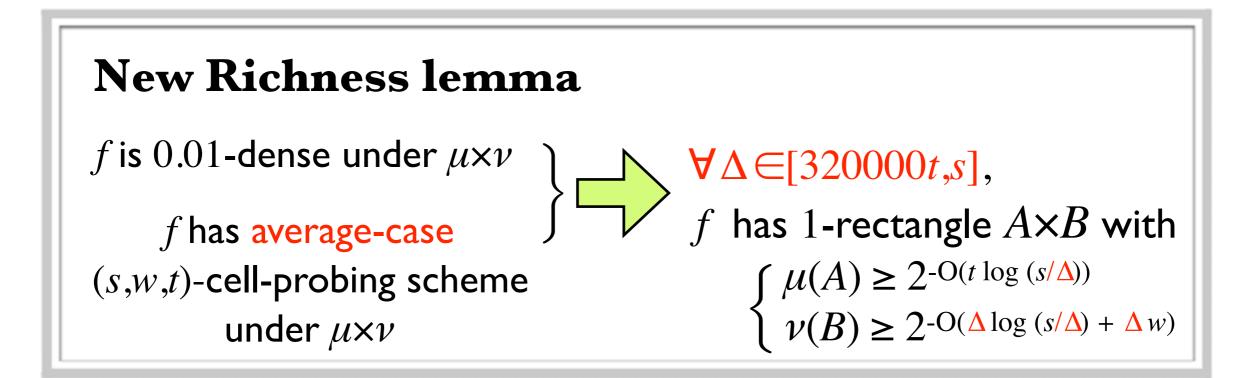
 $\}$ w bits

good $y \mapsto \omega \checkmark \leq {\binom{s}{\Delta}} 2^{\Delta w} = 2^{O(\Delta \log \frac{s}{\Delta} + \Delta w)}$ possibilities

 $B: (\geq 2^{-O(\Delta \log (s/\Delta) + \Delta w)} \text{ fraction (under } v) \text{ good } y) \mapsto \text{ the same } \omega$ cell-probe model: once ω is fixed,

A: (the set of positive queries resolved by ω is fixed

 $f: X \times Y \rightarrow \{0, 1\}$ distributions μ over X, ν over Y



Main Theorem:

For (γ, λ) -ANN in metric space (X,dist) where

- $\gamma\lambda$ -neighborhoods are weakly independent under μ : $\mu(N_{\gamma\lambda}(x)) < 0.99/n$ for $\forall x \in X$
- λ -neighborhoods are (Φ, Ψ) -expanding under μ : $\forall A \subseteq X$ that $\mu(A) \ge 1/\Phi \Rightarrow \mu(N_{\lambda}(A)) \ge 1-1/\Psi$

 \forall deterministic algorithm that makes *t* cell-probes in expectation on a table of size *s* cells, each of *w* bits (assuming *w*+log *s* < *n* / log Φ), under the input distribution:

database $y=(y_1, y_2, ..., y_n)$ where $y_1, y_2, ..., y_n \sim \mu$, i.i.d. query $x \sim \mu$, independently

$$t = \Omega\left(\frac{\log \Phi}{\log \frac{sw}{n\log \Psi}}\right)$$

Hamming space $X = \{0, 1\}^d$ database size: *n* time: *t* cell-probes; space: *s* cells, each of *w* bits

• database: $y_1, \dots, y_n \in \{0,1\}^d$ i.i.d. uniform

• query: uniform and independent $x \in \{0,1\}^d$

Approximate Near-Neighbor (ANN)		Randomized <i>Exact</i> Near-Neighbor
Deterministic	Randomized	(RENN)
$t = \Omega\left(\frac{d}{\log s}\right)$ [Miltersen <i>et al.</i> 1995] [Liu 2004] our result: $t = \Omega\left(\frac{d}{\log \frac{sw}{nd}}\right)$	$t = \Omega\left(\frac{\log n}{\log \frac{sw}{n}}\right)$ [Panigrahy Talwar Wieder 2008, 2010]	$t = \Omega\left(\frac{d}{\log s}\right)$ [Borodin Ostrovsky Rabani 1999] [Barkol Rabani 2000]

Thank you!