Simple
 Average-case Lower Bounds
 for
 Approximate Near-Neighbor
 from
 Isoperimetric Inequalities

Yitong Yin
Nanjing University

Nearest Neighbor Search
 (NNS)

metric space (X, dist)
database
$\boldsymbol{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in X^{n}$

query $x \in X$

data structure

output: database point y_{i} closest to the query point x applications: database, pattern matching, machine learning, ...

Near Neighbor Problem
 ($\lambda-N N$)

metric space (X, dist)
database

$$
\boldsymbol{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in X^{n}
$$

query $x \in X$

data structure

$\lambda-N N: \quad$ answer "yes" if $\exists y_{i}$ that is $\leq \lambda$-close to x "no" if all y_{i} are $>\lambda$-faraway from x

Approximate Near Neighbor (ANN)

metric space (X,dist)
database

$$
\boldsymbol{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in X^{n}
$$

query $x \in X$

data structure

(γ, λ)-ANN: answer "yes" if $\exists y_{i}$ that is $\leq \lambda$-close to x "no" if all y_{i} are $>\gamma \lambda$-faraway from x arbitrary if otherwise

Approximate Near Neighbor (ANN)

metric space (X,dist)
database
$\boldsymbol{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in X^{n}$

query $x \in X$
access
data structure

Hamming space $X=\{0,1\}^{d}$ $\operatorname{dist}(x, z)=\|x-z\|_{1}$

$$
\begin{aligned}
& 100 \log n<d<n^{o(1)} \\
& \text { Curse of dimensionality! }
\end{aligned}
$$

Hamming distance

Cell-Probe Model

data structure problem:

$$
f: X \times Y \rightarrow Z
$$

database

protocol: the pair (A, T)
(s, w, t)-cell-probing scheme

Near-Neighbor Lower Bounds

Hamming space $X=\{0,1\}^{d} \quad$ databas ${ }^{d}$ gisize) n time: t cell-probes; linepraspasecells; (each of $\#$ Blits)

$\left.$| Approximate Near-Neighbor (ANN) |
| :---: | :---: | :---: | | Randomized Exact |
| :---: |
| Near-Neighbor |
| (RENN) | \right\rvert\,

- matches the highest known lower bounds for any data structure problems: Polynomial Evaluation [Larsen'12], ball-inheritance (range reporting) [Grønlund, Larsen'16]

Why are data structure lower bounds so difficult?

- (Observed by [Miltersen et al. 1995]) An $\omega(\log n)$ cell-probe lower bound on polynomial space for any function in \mathbf{P} would prove $\mathbf{P} \nsubseteq$ linear-time poly-size Boolean branching programs. (Solved in [Ajtai 1999])
- (Observed by [Brody, Larsen 2012]) Even non-adaptive data structures are circuits with arbitrary gates of depth 2 :

Near-Neighbor Lower Bounds

Hamming space $X=\{0,1\}^{d} \quad$ database size: n time: t cell-probes; space: s cells, each of w bits

Approximate Near-Neighbor (ANN)		Randomized Exact Near-Neighbor (RENN)
Deterministic	Randomized	
$\begin{gathered} t=\Omega\left(\frac{d}{\log s}\right) \\ {[\text { Miltersen et al.1995] }} \\ {[\text { Liu 2004] }} \end{gathered}$	$t=\Omega\left(\frac{\log n}{\log \frac{s w}{n}}\right)$ [Panigrahy Talwar Wieder 2008, 2010]	$t=\Omega\left(\frac{d}{\log s}\right)$ [Borodin Ostrovsky Rabani 1999] [Barkol Rabani 2000]
$\begin{gathered} t=\Omega\left(\frac{d}{\log \frac{s w}{n}}\right) \\ \text { [Pătraşcu Thorup 2006] } \end{gathered}$		$t=\Omega\left(\frac{d}{\log \frac{s w}{n}}\right)$ [Pătrascu Thorup 2006]
$t=\Omega\left(\frac{d}{\log \frac{s w}{n d}}\right)$ [Wang Y. 2014]		

Average-Case Lower Bounds

- Hard distribution: [Barkol Rabani 2000] [Liu 2004] [PTW'08 '10]
- database: $y_{1}, \ldots, y_{n} \in\{0,1\}^{d}$ i.i.d. uniform
- query: uniform and independent $x \in\{0,1\}^{d}$
- Expected cell-probe complexity:
- $\mathbf{E}_{(x, y)}$ [\# of cell-probes to resolve query x on database y]
- "Curse of dimensionality" should hold on average.
- In data-dependent LSH [Andoni Razenshteyn 2015]: key step is to solve the problem on random input.

Average-Case Lower Bounds

Hamming space $X=\{0,1\}^{d} \quad$ database size: n time: t cell-probes; space: s cells, each of w bits

Approximate Near-Neighbor (ANN)		Randomized Exact Near-Neighbor (RENN)
Deterministic	Randomized	
$\begin{gathered} t=\Omega\left(\frac{d}{\operatorname{logs}}\right) \\ \text { [Miltersen elal. } 1995 \text {] } \\ \text { [iun 2004] } \end{gathered}$	$\begin{gathered} t=\Omega\left(\frac{\log n}{\log \frac{s w}{n}}\right) \\ \text { Panigrahy Talwar Wieder } \\ \text { 2008, 2010] } \end{gathered}$	

Average-Case Lower Bounds

Hamming space $X=\{0,1\}^{d} \quad$ database size: n time: t cell-probes; space: s cells, each of w bits

Approximate Near-Neighbor (ANN)		Randomized Exact Near-Neighbor (RENN)
Deterministic	Randomized	
$\begin{gathered} t=\Omega\left(\frac{d}{\log s}\right) \\ {\left[\begin{array}{c} \text { Miltersen et al. 1995] } \\ {[\text { Liu 2004] }} \end{array}\right.} \end{gathered}$		$t=\Omega\left(\frac{d}{\log s}\right)$ [Borodin Ostrovsky Rabani 1999] [Barkol Rabani 2000]
our result: $t=\Omega\left(\frac{d}{\log \frac{s w}{n d}}\right)$	$t=\Omega\left(\frac{\log n}{\log \frac{s w}{n}}\right)$ PPanigrahy Talwar Wieder 2008, 2010]	

Metric Expansion

[Panigrahy Talwar Wieder 2010]
metric space (X,dist)
λ-neighborhood: $\forall x \in X, N_{\lambda}(x)=\{z \in X \mid \operatorname{dist}(x, z) \leq \lambda\}$

$$
\forall A \subseteq X, N_{\lambda}(A)=\{z \in X \mid \exists x \in A \text { s.t. } \operatorname{dist}(x, z) \leq \lambda\}
$$

probability distribution μ over X

- λ-neighborhoods are weakly independent under μ :

$$
\forall x \in X, \mu\left(N_{\lambda}(x)\right)<0.99 / n
$$

- λ-neighborhoods are (Φ, Ψ)-expanding under μ :

$$
\forall A \subseteq X, \mu(A) \geq 1 / \Phi \Rightarrow \mu\left(N_{\lambda}(A)\right) \geq 1-1 / \Psi
$$

Metric Expansion

[Panigrahy Talwar Wieder 2010]
metric space (X,dist) \quad probability distribution μ over X

- λ-neighborhoods are (Φ, Ψ)-expanding under μ :

$$
\forall A \subseteq X, \mu(A) \geq 1 / \Phi \Rightarrow \mu\left(N_{\lambda}(A)\right) \geq 1-1 / \Psi
$$

vertex expansion, "blow-up" effect

Main Theorem:

For (γ, λ)-ANN in metric space (X, dist) where

- $\gamma \lambda$-neighborhoods are weakly independent under μ :

$$
\mu\left(N_{\gamma \lambda}(x)\right)<0.99 / n \text { for } \forall x \in X
$$

- λ-neighborhoods are (Φ, Ψ)-expanding under μ :

$$
\forall A \subseteq X \text { that } \mu(A) \geq 1 / \Phi \Rightarrow \mu\left(N_{\lambda}(A)\right) \geq 1-1 / \Psi
$$

\forall deterministic algorithm that makes t cell-probes in expectation on a table of size s cells, each of w bits (assuming $w+\log s<n / \log \Phi$), under the input distribution: database $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ where $y_{1}, y_{2}, \ldots, y_{n} \sim \mu$, i.i.d.
query $\quad x \sim \mu$, independently

$$
\square t=\Omega\left(\frac{\log \Phi}{\log \frac{s w}{n \log \Psi}}\right)
$$

Main Theorem:

For (γ, λ)-ANN in metric space (X, dist) where

- $\gamma \lambda$-neighborhoods are weakly independent under μ :

$$
\mu\left(N_{\gamma \lambda}(x)\right)<0.99 / n \text { for } \forall x \in X
$$

- λ-neighborhoods are (Φ, Ψ)-expanding under μ :

$$
\forall A \subseteq X \text { that } \mu(A) \geq 1 / \Phi \Rightarrow \mu\left(N_{\lambda}(A)\right) \geq 1-1 / \Psi
$$

\forall deterministic algorithm that makes t cell-probes in expectation on a table of size s cells, each of w bits (assuming $w+\log s<n / \log \Phi$), under the input distribution: database $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ where $y_{1}, y_{2}, \ldots, y_{n} \sim \mu$, i.i.d.
query $\quad x \sim \mu$, independently

$$
\square t=\Omega\left(\frac{\log \Phi}{\log \frac{s w}{n \log \Psi}}\right)
$$

The Richness Lemma

$f: X \times Y \rightarrow\{0,1\}$
$x \in X$

cell-probing algorithm

table (s cells, each of w bits) distributions μ over X, v over Y
α-dense: density of $1 \mathrm{~s} \geq \alpha$ under $\mu \times v$ monochromatic 1-rectangle: $A \times B$ with $A \subseteq X, B \subseteq Y$

$$
\text { s.t. } \forall(x, y) \in A \times B, f(x, y)=1
$$

Richness lemma (Miltersen, Nisan, Safra, Wigderson, 1995)

A New Richness Lemma

$f: X \times Y \rightarrow\{0,1\} \quad$ distributions μ over X, v over Y

Richness lemma (Miltersen, Nisan, Safra, Wigderson, 1995)

New Richness lemma

f is 0.01 -dense under $\mu \times v$
f has average-case $\forall \Delta \in[320000 t, s]$, f has 1-rectangle $A \times B$ with (s, w, t)-cell-probing scheme under $\mu \times v$

$$
\left\{\begin{array}{l}
\mu(A) \geq 2-\mathrm{O}(t \log (s / \Delta)) \\
\nu(B) \geq 2-\mathrm{O}(\Delta \log (s / \Delta)+\Delta w)
\end{array}\right.
$$

when $\Delta=\mathrm{O}(t)$, it becomes the richness lemma (with slightly better bounds)
$f: X \times Y \rightarrow\{0,1\} \quad$ distributions μ over X, v over Y

New Richness lemma

f is 0.01 -dense under $\mu \times v$ f has average-case

f has 1-rectangle $A \times B$ with (s, w, t)-cell-probing scheme under $\mu \times v$

$$
\left\{\begin{array}{l}
\mu(A) \geq 2-O(t \log (s / \Delta) \\
\nu(B) \geq 2^{-O(\Delta \log (s / \Delta)+\Delta w)}
\end{array}\right.
$$

metric space (X, dist), query $x \in X$, database $y=\left(y_{1}, \ldots, y_{n}\right) \in X_{n}$

$$
\begin{aligned}
& \neg(\gamma, \lambda) \text {-ANN: } \quad f(x, y)=\bigwedge_{i=1}^{n} g\left(x, y_{i}\right) \\
& \text { where } \\
& \qquad g\left(x, y_{i}\right)= \begin{cases}1 & \operatorname{dist}\left(x, y_{i}\right)>\gamma \lambda \\
0 & \operatorname{dist}\left(x, y_{i}\right) \leq \lambda \\
* & \text { otherwise }\end{cases}
\end{aligned}
$$

Other examples: partial match, membership, range query, ...

New Richness lemma

f is 0.01 -dense under $\mu \times v$
f has average-case
(s, w, t)-cell-probing scheme under $\mu \times v$
 $\forall \Delta \in[320000 t, s]$, f has 1-rectangle $A \times B$ with

$$
\left\{\begin{array}{l}
\mu(A) \geq 2^{-\mathrm{O}(t \log (s / \Delta))} \\
v(B) \geq 2^{-\mathrm{O}(\Delta \log (s / \Delta)+\Delta w)}
\end{array}\right.
$$

- $\gamma \lambda$-neighborhoods are weakly independent under μ :

$$
\mu\left(N_{\gamma \lambda}(x)\right)<0.99 / n \text { for } \forall x \in X
$$

\triangle density of 0 s in g is $\leq 0.99 / n$ under $\mu \times \mu$
f is 0.01 -dense under $\mu \times \mu^{n}$

- λ-neighborhoods are (Φ, Ψ)-expanding under μ :

$$
\forall A \subseteq X, \mu(A) \geq 1 / \Phi \Rightarrow \mu\left(N_{\lambda}(A)\right) \geq 1-1 / \Psi
$$

$\Rightarrow g$ does not have 1 -rectangle $A \times C$ with $\mu(A)>1 / \Phi$ and $\mu(C)>1 / \Psi$
$\Rightarrow f$ does not have 1 -rectangle $A \times B$ with $\mu(A)>1 / \Phi$ and $\mu^{n}(B)>1 / \Psi n$ choose $\Delta=O\left(\frac{n \log \Psi}{w}\right)$ so that $\mu^{n}(B) \geq 2-\mathrm{O}(\Delta \log (s / \Delta)+\Delta w)>1 / \Psi^{n}$

$$
\rightarrow 1 / \Phi \geq \mu(A) \geq 2^{-\mathrm{O}(t \log (s / \Delta))} \leadsto t=\Omega\left(\frac{\log \Phi}{\log \frac{s w}{n \log \Psi}}\right)
$$

New Richness lemma

f is 0.01 -dense under $\mu \times v$
f has average-case (s, w, t)-cell-probing scheme under $\mu \times v$

≥ 0.0025-fraction (under v) of databases $y \in Y$ are "good":
s.t. \forall good database $y,\left\{\begin{array}{l}\geq 0.005 \text {-fraction of queries } x \in X \text { are positive } \\ \text { avg. cell-probes for positive queries } \leq 80000 t\end{array}\right.$

$\square \exists \Delta$ cells resolving $2^{-\mathrm{O}(t \log (s / \Delta))}$ fraction (under μ) positive queries

New Richness lemma

f is 0.01 -dense under $\mu \times v$
f has average-case (s, w, t)-cell-probing scheme under $\mu \times v$

f has 1-rectangle $A \times B$ with

$$
\left\{\begin{array}{l}
\mu(A) \geq 2-\mathrm{O}(t \log (s / \Delta)) \\
v(B) \geq 2-\mathrm{O}(\Delta \log (s / \Delta)+\Delta w)
\end{array}\right.
$$

≥ 0.0025-fraction (under v) of databases $y \in Y$ are "good":
s.t. \forall good database y,
$\exists \Delta$ cells resolving $2^{-\mathrm{O}(t \log (s / \Delta))}$ fraction (under μ) positive queries

ω : positions \& contents of these Δ cells $\operatorname{good} y \longmapsto \omega<\leq\binom{ s}{\Delta} 2^{\Delta w}=2^{O\left(\Delta \log \frac{s}{\Delta}+\Delta w\right)}$ possibilities
 cell-probe model: once ω is fixed,
A : the set of positive queries resolved by ω is fixed
$f: X \times Y \rightarrow\{0,1\} \quad$ distributions μ over X, v over Y

New Richness lemma

f is 0.01 -dense under $\mu \times v$
f has average-case

(s, w, t)-cell-probing scheme under $\mu \times v$

$$
\left\{\begin{array}{l}
\mu(A) \geq 2^{-\mathrm{O}(t \log (s / \Delta))} \\
v(B) \geq 2^{-\mathrm{O}(\Delta \log (s / \Delta)+\Delta w)}
\end{array}\right.
$$

Main Theorem:

For (γ, λ)-ANN in metric space (X, dist) where

- $\gamma \lambda$-neighborhoods are weakly independent under μ :

$$
\mu\left(N_{\gamma \lambda}(x)\right)<0.99 / n \text { for } \forall x \in X
$$

- λ-neighborhoods are (Φ, Ψ)-expanding under μ :

$$
\forall A \subseteq X \text { that } \mu(A) \geq 1 / \Phi \Rightarrow \mu\left(N_{\lambda}(A)\right) \geq 1-1 / \Psi
$$

\forall deterministic algorithm that makes t cell-probes in expectation on a table of size s cells, each of w bits (assuming $w+\log s<n / \log \Phi$), under the input distribution: database $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ where $y_{1}, y_{2}, \ldots, y_{n} \sim \mu$, i.i.d.
query $\quad x \sim \mu$, independently

$$
\square t=\Omega\left(\frac{\log \Phi}{\log \frac{s w}{n \log \Psi}}\right)
$$

Average-Case Lower Bounds

Hamming space $X=\{0,1\}^{d} \quad$ database size: n time: t cell-probes; space: s cells, each of w bits

- database: $y_{1}, \ldots, y_{n} \in\{0,1\}^{d}$ i.i.d. uniform
- query: uniform and independent $x \in\{0,1\}^{d}$

Approximate Near-Neighbor (ANN)		Randomized Exact Near-Neighbor (RENN)
Deterministic	Randomized	
$t=\Omega\left(\frac{d}{\log s}\right)$ [Miltersen et al. 1995] Liu 2004]	$t=\Omega\left(\frac{\log n}{\log \frac{s w}{n}}\right)$ [Panigrahy Talwar Wieder 2008, 2010]	$t=\Omega\left(\frac{d}{\log s}\right)$ [Borodin Ostrovsky Rabani 1999] [Barkol Rabani 2000]
our result: $t=\Omega\left(\frac{d}{\log \frac{s w}{n d}}\right)$		

Thank you!

