Spatial Mixing of Coloring Random Graphs

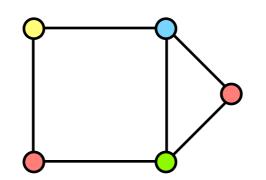
Yitong Yin
Nanjing University

Colorings

undirected G(V,E)

max-degree:

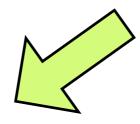
d



q colors:

approximately counting or sampling almost uniform proper *q*-colorings of *G*

when $q \ge \alpha d + \beta$



temporal mixing of Glauber dynamics

 χ .

2

11/6

[Jerrum'95] [Salas-Sokal'97]

[Bubley-Dyer'97]

[Vigoda'99]

2

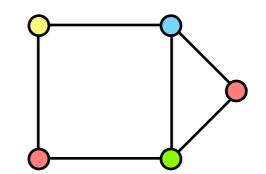
spatial mixing of Gibbs measure

conjecture: $\alpha=1$

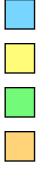
Spatial Mixing

undirected G(V,E)

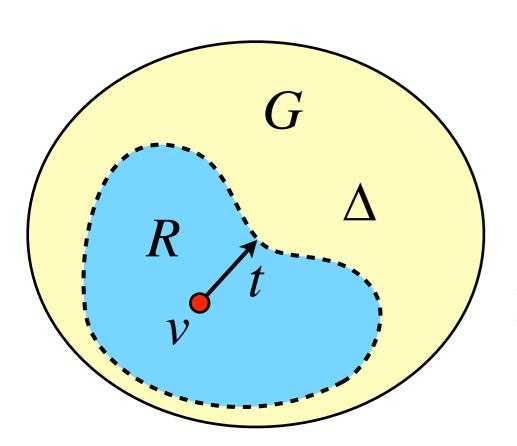
max-degree:



q colors:



Gibbs measure: uniform random proper q-coloring of G



$$c:V\to [q]$$

 $\text{region }R\subset V\qquad \Delta\supseteq\partial R$

$$\Delta \supset \partial R$$

proper q-colorings $\sigma_{\Delta}, \tau_{\Delta} : \Delta \to [q]$

$$\Pr[c(v) = x \mid \sigma_{\Delta}] \approx \Pr[c(v) = x \mid \tau_{\Delta}]$$

error $< \exp(-t)$

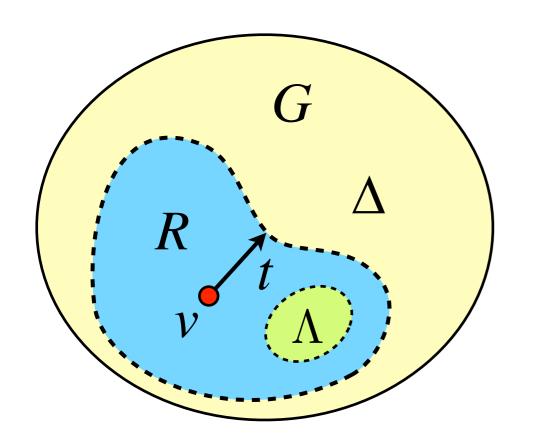
Spatial Mixing

weak spatial mixing (WSM):

$$\Pr[c(v) = x \mid \sigma_{\Delta}] \approx \Pr[c(v) = x \mid \tau_{\Delta}]$$

strong spatial mixing (SSM):

$$\Pr[c(v) = x \mid \sigma_{\Delta}, \sigma_{\Lambda}] \approx \Pr[c(v) = x \mid \tau_{\Delta}, \sigma_{\Lambda}]$$



error $< \exp(-t)$

SSM: the value of

$$\Pr[c(v) = x \mid \sigma_{\Lambda}]$$

critical to counting and sampling

is approximable

by local information

Spatial Mixing of Coloring

q-coloring of G $q \ge \alpha d + O(1)$ max-degree: d

SSM: $\alpha > 1.763...$ (solution to $x^x = e$) average degree?

- [Goldberg, Martin, Paterson 05] triangle-free amenable graphs
- [Ge, Stefankovic 11] regular tree
- [Gamarnik, Katz, Misra 12] triangle-free graphs

Spatial-mixing-based FPTAS:

- [Gamarnik, Katz 07] $\alpha > 2.8432...$, triangle-free graphs
- [Lu, Y. 14] $\alpha > 2.58071...$

$SSM \Rightarrow algorithm$

- [Goldberg, Martin, Paterson 05] amenable graph, SSM \Rightarrow FPRAS
- [Y., Zhang 13] planar graph (apex-minor-free), SSM \Rightarrow FPTAS

Random Graph G(n,d/n)

average degree: d max-degree: $\Theta\left(\frac{\ln n}{\ln \ln n}\right)$ whp

q-colorable whp for a $q=O(d/\ln d)$

rapid mixing of (block) Glauber dynamics:

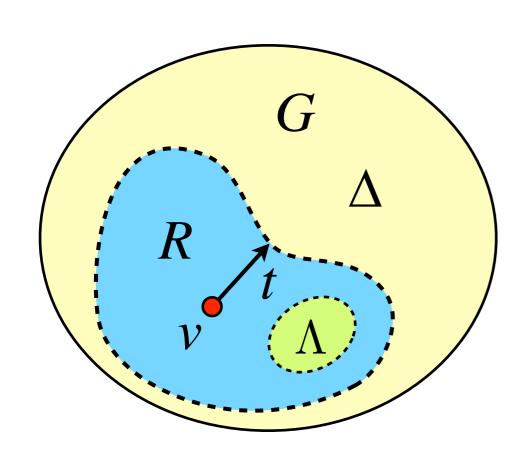
- [Dyer, Flaxman, Frieze, Vigoda 06] $q=O(\ln \ln n/\ln \ln n)$
- [Efthymiou, Spirakis 07] [Mossel, Sly 08] q=poly(d)
- [Efthymiou 14] q > 5.5d + 1

spatial mixing?

Negative Result for SSM

strong spatial mixing (SSM): for any vertex v

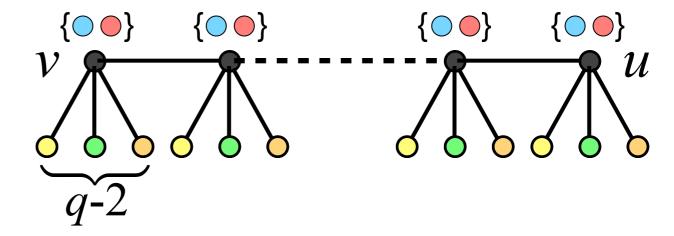
$$\Pr[c(v) = x \mid \sigma_{\Delta}, \sigma_{\Lambda}] \approx \Pr[c(v) = x \mid \tau_{\Delta}, \sigma_{\Lambda}]$$



in G(n, d/n) for any q=O(1)

q colors:

whp, \exists : $\Omega(\ln n) \log$



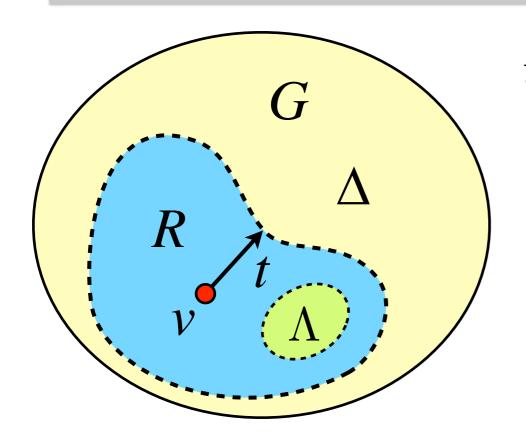
This counter-example only affect the strong spatial mixing.

Main Result

 $q \ge \alpha d + \beta$ for $\alpha > 2$ and some $\beta = O(1)$ (23 is enough) fix any $v \in [n]$, and then sample G(n,d/n)

whp: G(n,d/n) is q-colorable, and for any σ, τ

$$|\Pr[c(v) = x \mid \sigma] - \Pr[c(v) = x \mid \tau]| = \exp(-\Omega(t))$$



$$t = \operatorname{dist}(v, \Delta) = \omega(1)$$

is the shortest distance from v to where σ , τ differ

Strong Spatial Mixing w.r.t any fixed vertex!

Error Function

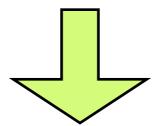
error function [Gamarnik, Katz, Misra 12]:

two distributions $\mu_1, \mu_2 : \Omega \to [0, 1]$

$$\mathcal{E}(\mu_1, \mu_2) = \max_{x, y \in \Omega} \left(\log \frac{\mu_1(x)}{\mu_2(x)} - \log \frac{\mu_1(y)}{\mu_2(y)} \right)$$

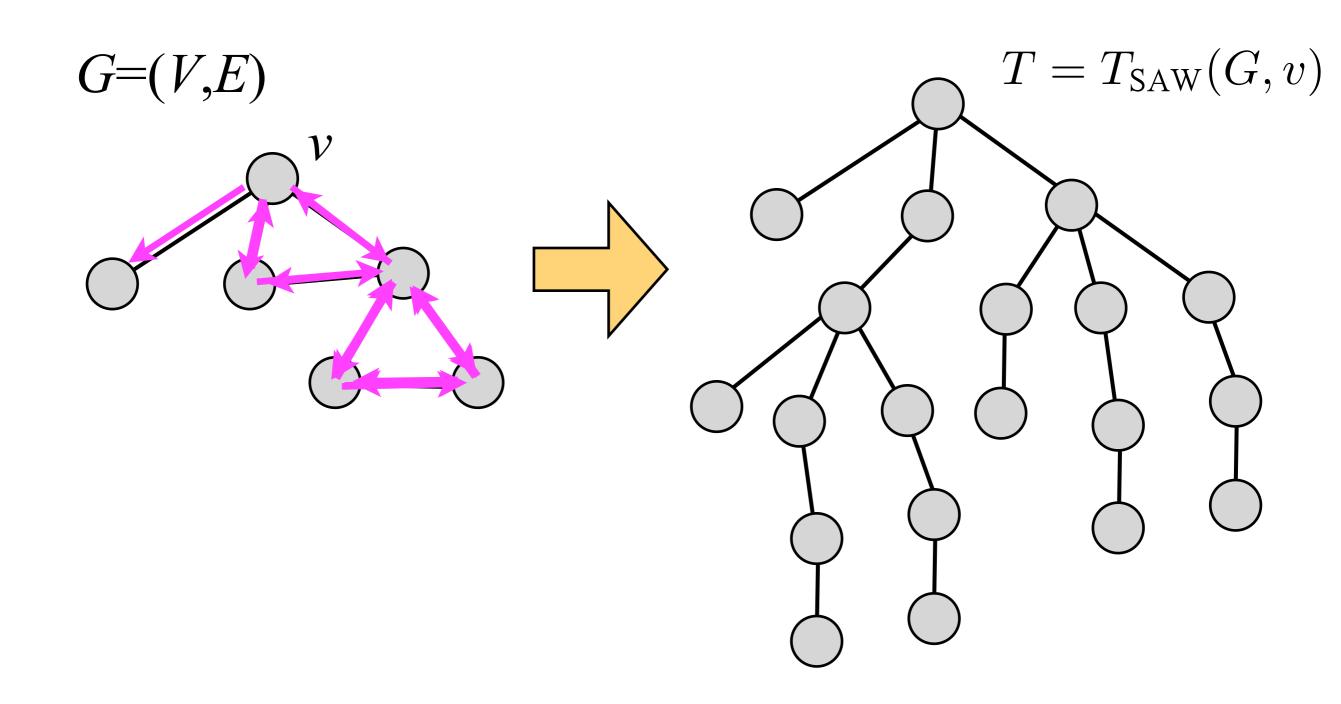
marginal distributions $\ \mu_v^{\sigma}(x) = \Pr[c(v) = x \mid \sigma] \ \ \text{and} \ \ \mu_v^{\tau}$

$$\mathcal{E}(\mu_v^{\sigma}, \mu_v^{\tau}) \le \exp(-\Omega(t))$$

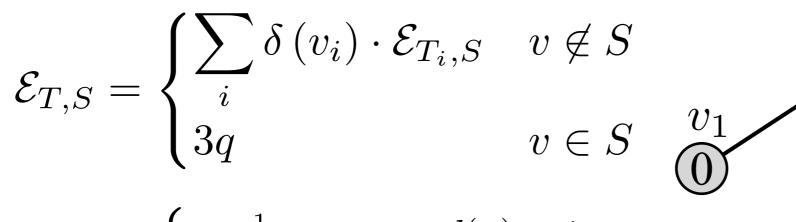


$$|\Pr[c(v) = x \mid \sigma] - \Pr[c(v) = x \mid \tau]| = \exp(-\Omega(t))$$

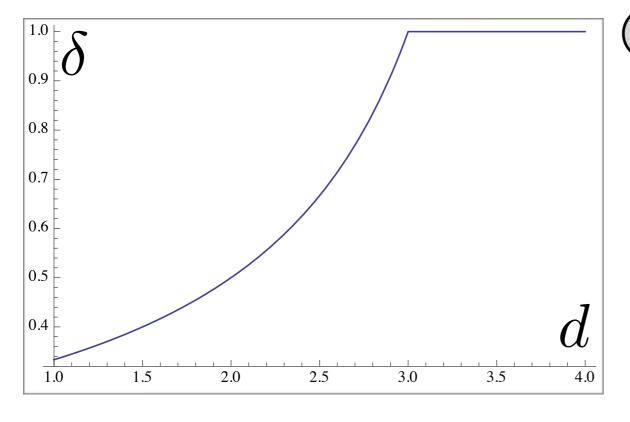
Self-Avoiding Walk Tree

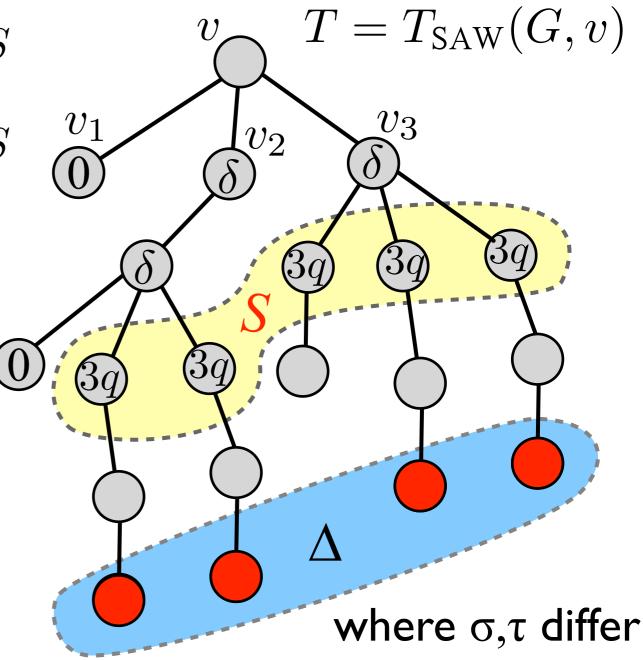


Error Propagation along Self-voiding Walks



$$\delta(u) = \begin{cases} \frac{1}{q - d(u) - 1} & q > d(u) + 1\\ 1 & \text{o.w.} \end{cases}$$



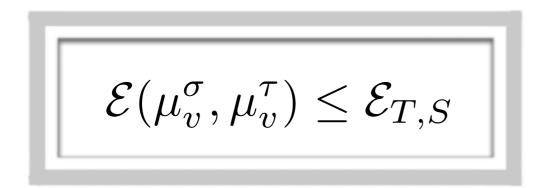


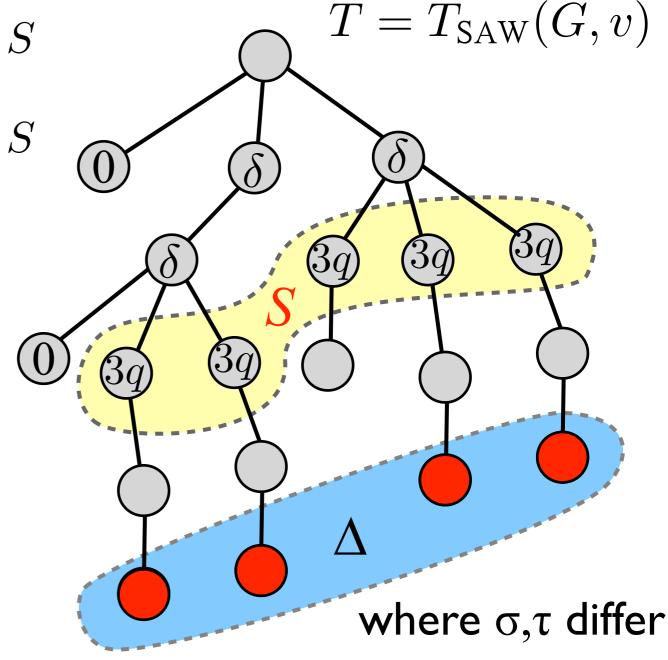
Error Propagation along Self-voiding Walks

$$\mathcal{E}_{T,S} = \begin{cases} \sum_{i} \delta(v_i) \cdot \mathcal{E}_{T_i,S} & v \notin S \\ 3q & v \in S \end{cases}$$

$$\delta(u) = \begin{cases} \frac{1}{q - d(u) - 1} & q > d(u) + 1\\ 1 & \text{o.w.} \end{cases}$$

S: permissive cut-set





 $\mu_v^{\sigma}, \mu_v^{\tau}$: marginal distributions at v in G conditioning on σ, τ

Proof of Main Result

 $\mu_v^{\sigma}, \mu_v^{\tau}$: marginal distributions at v in G conditioning on σ, τ

error function:
$$\mathcal{E}(\mu_v^{\sigma}, \mu_v^{\tau}) = \max_{x,y \in [q]} \left(\log \frac{\mu_v^{\sigma}(x)}{\mu_v^{\tau}(x)} - \log \frac{\mu_v^{\sigma}(y)}{\mu_v^{\tau}(y)} \right)$$

$$T = T_{\text{SAW}}(G, v)$$

 $T = T_{SAW}(G, v)$ S: permissive cut-set

correlation decay:

$$\mathcal{E}(\mu_v^{\sigma}, \mu_v^{\tau}) \le \mathcal{E}_{T,S}$$

for
$$T = T_{SAW}(G, v)$$
 where $G = G(n, d/n)$ whp: always exists a permissive cut-set S

probabilistic method:

$$\mathcal{E}_{T,S} = \exp(-\Omega(t))$$

$$\mathcal{E}(\mu_v^{\sigma}, \mu_v^{\tau}) \le \mathcal{E}_{T,S}$$

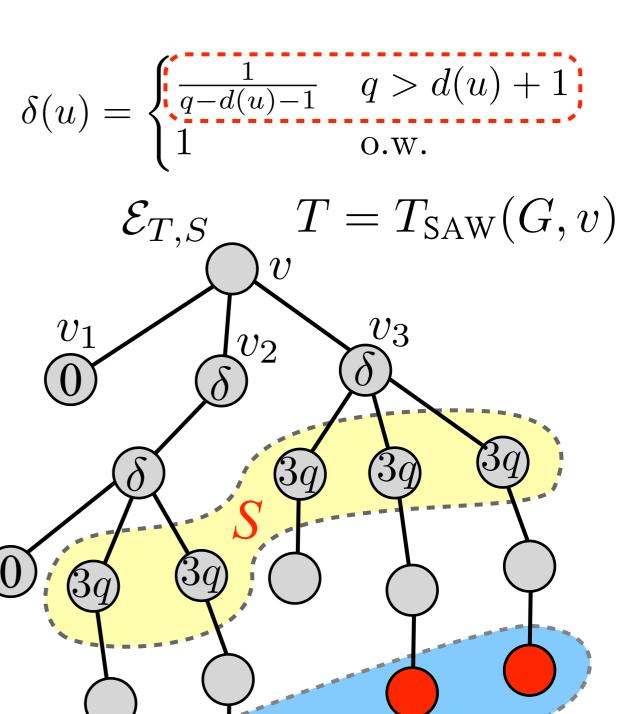
for
$$v \in S$$

then
$$\mathcal{E}(\mu_v^{\sigma}, \mu_v^{\tau}) \leq 3q$$

if q > d(u) + 1 for all u

$$\mathcal{E}(\mu_v^{\sigma}, \mu_v^{\tau}) \le \sum_i \frac{1}{q - d(v_i) - 1} \cdot \mathcal{E}(\mu_{v_i}^{\sigma}, \mu_{v_i}^{\tau})$$

where $\mu_{v_i}^{\sigma}, \mu_{v_i}^{\tau}$ defined in $G \setminus \{v\}$ (with altered color lists)



[Gamarnik, Katz, Misra 12]:

$$\text{if } q > d(u) + 1 \text{ for all } u \quad \mathcal{E}(\mu_v^\sigma, \mu_v^\tau) \leq \sum_i \frac{1}{q - d(v_i) - 1} \cdot \mathcal{E}(\mu_{v_i}^\sigma, \mu_{v_i}^\tau)$$

$$\begin{split} \mathcal{E}(\mu_v^{\sigma}, \mu_v^{\tau}) &= \max_{x,y \in \Omega} \left(\log \frac{\mu_v^{\sigma}(x)}{\mu_v^{\tau}(x)} - \log \frac{\mu_v^{\sigma}(y)}{\mu_v^{\tau}(y)} \right) = \max_{x,y \in \Omega} \left(\log \frac{\mu_v^{\sigma}(x)}{\mu_v^{\sigma}(y)} - \log \frac{\mu_v^{\tau}(x)}{\mu_v^{\tau}(y)} \right) \\ & \text{where } \frac{\mu_v^{\sigma}(x)}{\mu_v^{\sigma}(y)} = \frac{\Pr(c(v) = x \mid \sigma)}{\Pr(c(v) = y \mid \sigma)} = \frac{\Pr_{G \setminus \{v\}}(\forall i, c(v_i) \neq x \mid \sigma)}{\Pr_{G \setminus \{v\}}(\forall i, c(v_i) \neq y \mid \sigma)} \\ &= \prod_i \frac{1 - \Pr_{G \setminus \{v\}}(c(v_i) = x \mid \sigma)}{1 - \Pr_{G \setminus \{v\}}(c(v_i) = y \mid \sigma)} \quad \text{(telescopic product)} \\ &= \sum_i \left[\log \left(1 - \mu_{v_i}^{\sigma}(x) \right) - \log \left(1 - \mu_{v_i}^{\tau}(x) \right) \right] - \sum_i \left[\log \left(1 - \mu_{v_i}^{\sigma}(y) \right) - \log \left(1 - \mu_{v_i}^{\tau}(y) \right) \right] \end{split}$$

$$= \sum_{i} \frac{\mu_{i}}{1 - \mu_{i}} \log \frac{\mu_{v_{i}}^{\tau}(x)}{\mu_{v_{i}}^{\sigma}(x)} - \sum_{i} \frac{\mu_{i}'}{1 - \mu_{i}'} \log \frac{\mu_{v_{i}}^{\tau}(y)}{\mu_{v_{i}}^{\sigma}(y)}$$
 (mean value theorem)

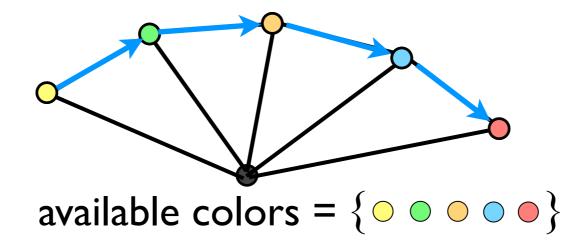
where $\mu_i, \mu_i' \leq \max\{\mu_{v_i}^{\tau}(x), \mu_{v_i}^{\sigma}(x), \mu_{v_i}^{\tau}(y), \mu_{v_i}^{\sigma}(y)\} \leq \frac{1}{q - d(v_i)}$

$$\leq \sum_{i} \frac{1}{q - d(v_{i}) - 1} \max_{x, y} \left(\log \frac{\mu_{v_{i}}^{\sigma}(x)}{\mu_{v_{i}}^{\tau}(x)} - \log \frac{\mu_{v_{i}}^{\sigma}(y)}{\mu_{v_{i}}^{\tau}(y)} \right) \leq \sum_{i} \frac{1}{q - d(v_{i}) - 1} \mathcal{E}\left(\mu_{v_{i}}^{\sigma}, \mu_{v_{i}}^{\tau}\right)$$

For unbounded degree:

q colors:

when calculating correlation decay along path:

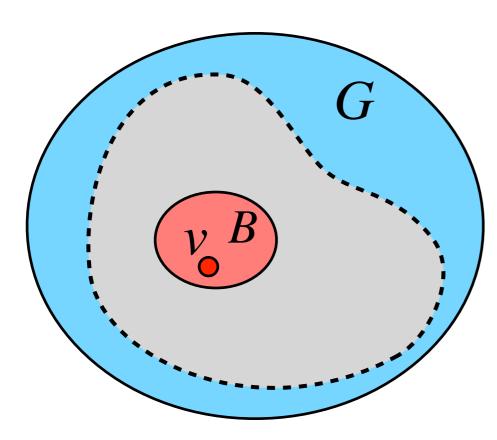


end up with an infeasible coloring

effectively $\times \infty$ in calculating correlation decay:

- error function [Gamarnik-Katz-Misra'l2]
- recursive coloring [Goldberg-Martin-Paterson'05]
- computation tree [Gamarnik-Katz'07]
- computation tree with potential function [Lu-Y.'14]

Block-wise Correlation Decay



vertex v grows to a permissive block $B \ni v$

$$\forall u \in \partial B, \quad q > d(u) + 1$$

minimal permissive block ${\it B}$ around ${\it v}$

$$\forall u \in B \setminus \{v\}, \quad q \le d(u) + 1$$

consider marginal distributions $\;\mu_B^\sigma, \mu_B^\tau\;$ of colorings of B

$$\mathcal{E}(\mu_v^\sigma, \mu_v^\tau) \leq \mathcal{E}(\mu_B^\sigma, \mu_B^\tau) \qquad \text{(averaging principle)}$$

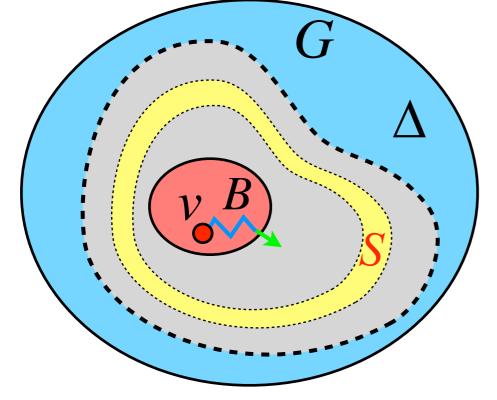
$$\mathcal{E}(\mu_B^{\sigma}, \mu_B^{\tau}) \leq \sum_i \frac{1}{q - d(v_i) - 1} \cdot \mathcal{E}(\mu_{v_i}^{\sigma}, \mu_{v_i}^{\tau}) \qquad \text{(telescopic product + mean value theorem)}$$

boundary vertices of B

$$\mathcal{E}(\mu_v^{\sigma}, \mu_v^{\tau}) \le \mathcal{E}_{T,S}$$

$$\delta(u) = \begin{cases} \frac{1}{q - d(u) - 1} & q > d(u) + 1\\ 1 & \text{o.w.} \end{cases}$$

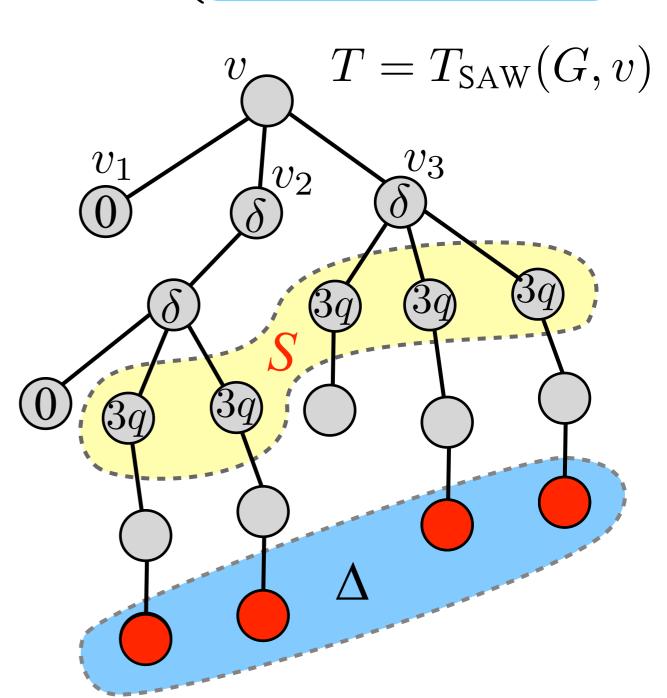
$$\text{for } v \in S \qquad \mathcal{E}(\mu_v^\sigma, \mu_v^\tau) \leq 3q$$



$$\mathcal{E}(\mu_v^{\sigma}, \mu_v^{\tau}) \le \mathcal{E}(\mu_B^{\sigma}, \mu_B^{\tau})$$

$$\leq \sum_{i} \frac{1}{q - d(v_i) - 1} \cdot \mathcal{E}(\mu_{v_i}^{\sigma}, \mu_{v_i}^{\tau})$$

where v_i are boundary vertices of B and $\mu_{v_i}^{\sigma}, \mu_{v_i}^{\tau}$ defined in $G \setminus B$



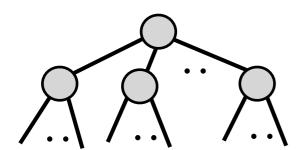
Random Self-Avoiding Walks

for $T = T_{SAW}(G, v)$ where G = G(n, d/n)

whp: always exists a permissive cut-set S

$$\mathcal{E}_{T,S} = \exp(-\Omega(t))$$

 $T = T_{\mathrm{SAW}}(G, v)$ is like a Galton-Watson random tree with binomial degree distribution B(n-1,d/n)



each $d(u) \sim B(n-1,d/n)$ when $q > \alpha d + O(1)$ for $\alpha > 2$

a permissive cut-set S of depth > t/2 exists

$$\delta(u) = \begin{cases} \frac{1}{q - d(u) - 1} & q > d(u) + 1 \\ 1 & \text{o.w.} \end{cases} \quad \mathbb{E}[\delta(u)] < \frac{1}{q - d}$$

Summary

$$q \ge \alpha d + O(1)$$
 for $\alpha > 2$

- SSM for q-colorings of G(n,d/n) w.r.t. fixed vertex:
 - a block-wise decay of correlation for colorings of graphs with unbounded degree
- Algorithmic implication is still open:
 - With SSM, local information is sufficient to estimate marginals. What local structure of G(n,d/n) can be exploited to efficiently compute marginals?
 - Path-coupling of block Glauber Dynamics replies on correlation decay.

Thank you!

Any questions?