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Colorings

undirected G(V,E)

®
max-degree:

d

> g colors:

approximately counting
or sampling almost uniform
proper g-colorings of G

when g >od+ 3

conjecture: o=1

temporal mixing of
Glauber dynamics

o: 2 — 11/6

[Jerrum’935] [Vigoda’99]
[Salas-Sokal’97]

[Bubley-Dyer’97]

% spatial mixing of

Gibbs measure



Spatial Mixing

undirected G(V,E)

O (
max-degree: q colors:
d
C e

Gibbs measure: uniform random proper g-coloring of G
c:V —|q]

region RCV A DOJR

proper g-colorings oa,7a : A — [q]

Pric(v) =z | oa] = Prle(v) = x | TA]

error < exp (-7)



Spatial Mixing
weak spatial mixing (WSM):
Pric(v) =z | oa] = Prlc(v) = 2 | 7a]
strong spatial mixing (SSM):
Prlc(v) =z | oa,00] = Pric(v) = x| A, 04]
error < exp (-7)

SSM: the value of

o TTTTmTosmmsmmssmmssmees »  critical to
. Pric(v) =z | oa . counting
Nemmsesmseasscanscannoans * and sampling

is approximable
by local information




Spatial Mixing of Coloring

---------------------

g-coloring of G g =od+O(1) : max-degree: d

.....................

SSM: o>1.763... (solution to % = ¢) 4aVErage degree?

® [Goldberg, Martin, Paterson 05] triangle-free amenable graphs
® [Ge, Stefankovic 11] regular tree
® [Gamarnik, Katz, Misra 12] triangle-free graphs

Spatial-mixing-based FPTAS:

® [Gamarnik, Katz 07] X>2.8432..., triangle-free graphs
® [LuY.14] =>2.58071...

SSM = algorithm
® [Goldberg, Martin, Paterson 05] amenable graph, SSM = FPRAS

® [Y, Zhang 13] planar graph (apex-minor-free), SSM = FPTAS



Random Graph G(n,d/n)

average degree: d max-degree: @( . ) whp

Inlnn

g-colorable whp for a g=0(d/In d)

rapid mixing of (block) Glauber dynamics:

® [Dyer, Flaxman, Frieze,Vigoda 06] g=O(Inln #/Inlnln »)
® [Efthymiou, Spirakis 07] [Mossel, Sly 08] g=poly(d)
e [Efthymiou 14] g >5.5d+1

spatial mixing?



Negative Result for SSM

strong spatial mixing (SSM):  for any vertex v

Pric(v) =z | oa,on] = Prlc(v) =z | TA, oA

in G(n,d/n) for any g=0(1)

g colors:

whp, 3: Q(In n) long

{00} 1060} {06} 100}
V I I --------- I I U
5

This counter-example only affect the strong spatial mixing.



Main Result

g = od+ [ for o>2 and some =0(1) (23 is enough)
fix any v&[n], and then sample G(n,d/n)

whp: G(n,d/n) is g-colorable, and for any o, T
Pric(v) =« | o] = Pric(v) = 2 | 7]| = exp (=0(2))

t = dist(v, A) = w(1)

is the shortest distance
from v to where o,t differ

Strong Spatial Mixing
w.r.t any fixed vertex!




Error Function

error function [Gamarnik, Katz, Misra 12]:

two distributions 1, p2 1 € — [0, 1]

= max | lo fa ) O 0ty
E(pr, p2) = ryes) (1 5 1o () o8 /LQ(?/)>

marginal distributions p; () = Pric(v) =2 | | and pu,,

E(g s ty) < exp(—2(t)

—

~_"

Pric(v)

v | o] - Prle(v) = 2 | 7]| = exp (—Q(t))



Self-Avoiding Walk Tree

G:(V,E) . T = TSAW(G7 2})

N o O O
T O—H > o 3O T



Error Propagation along Self-voiding Walks
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Error Propagation along Self-voiding Walks

2(5(1%) €, s UVES . T = TSAW(G,U)
gT’S — i
: vesS
q o @ B
o(u) = < q—d(lu)—1 q > d(u)+1 .-
1 O.W.

S: permissive cut-set

Uy I,y o marginal distributions at v in G conditioning on 6,1



Proof of Main Result

Uy I, o marginal distributions at v in G conditioning on 6,1

error function: &(ug,u]) = max (log () log Ho (y))
vyl \  pg(T) ()
T = Tsaw (G, v) S: permissive cut-set
correlation

decay:

for T =Tsaw(G,v) where G=G(n,d/n)

whp: always exists a permissive cut-set S

probabilistic

method: ér,s = exp(= (1))



for ves

then &(ug, py) < 3q

---------------------------------

---------------------------------

g(:ug?:uZ) < Z g — d(’UZ) 1 ) 5(,ug%,,u;)

where 47, p,,. defined in G \ {v}

(with altered color lists)



[ Gamarnik, Katz, Misra 12]:

1
U,;)—l

if ' E(1g, ) < Z T < E (Mg, s M)

ST ACO BT ),
(108 og 449

13 (y) 1y (y)

B i po, () I
= 0

g log
~1—p; " pg(v) “—l—pp ~ pg(y)

- Z - d(ii) . (log o () oo H (y)) < Z

—1 =y p, () p, ()




For unbounded degree:

g colors:

when calculating correlation decay along path:

available colors = {0 0 0 0 0}

end up with an infeasible coloring

effectively X o0 in calculating correlation decay:

* error function [Gamarnik-Katz-Misra’|2]

* recursive coloring [Goldberg-Martin-Paterson’05]

* computation tree [Gamarnik-Katz’07]

e computation tree with potential function [Lu-Y.14]



Block-wise Correlation Decay

vertex v grows to a
permissive block Bov

Yu€e dB, q>d(u)+1

minimal permissive block B around v
Vu e B\ {v}, q¢<d(u)+1

consider marginal distributions u%, up of colorings of B

E(ue, ) < E(uG, up) (averaging principle)

(telescopic product +

o T 1 o T
g(:uBmuB) < Z q — d(?]@) 1 . g(uv\i"u;i) mean value theorem)

boundary vertices of B




E(pd,pr) < E(u%G, up)

1
< - E( g s Mo,
where v, are boundary vertices of B

and i, by, defined in G\ B




Random Self-Avoiding Walks

for T =Tsaw(G,v) where G=G(n,d/n)

whp: always exists a permissive cut-set S

Er,s = ex{_whp [)E[E7 5] = exp(—Q(1))

T = Tsaw (G, v) is like a Galton-Watson random tree

with binomial degree distribution B(n-1,d/n)

each d(u)~ B(n-1,d/n)
when ¢>ad+0O(1) for a> 2

a permissive cut-set S of depth > #/2 exists

( 1 1
ou) = < f 0.W. [ (U)] - q—d

\



Summary

g = od+ O(1) for x>2

® SSM for g-colorings of G(n,d/n) w.r.t. fixed vertex:

® a block-wise decay of correlation for colorings of graphs

with unbounded degree

® Algorithmic implication is still open:

® With SSM, local information is sufficient to estimate
marginals.What local structure of G(n,d/n) can be

exploited to efficiently com

® Path-coupling of block Glau
correlation decay.

bute marginals?

ber Dynamics replies on






