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Holant Problems
(Valiant 2004)

Instance: = (G(V7 E)a{ffv}’u! V)

.- -~

graph G=(V,E) edges: variables (domain [q])

vertices: constraints (arity=degree)

symmetric Jo : [q]deg(”) —C

configuration (solution, coloring,..): ! ! [q]°

holant (counting):

PWTIYX > [] A (o lewm)

#matchings: q=2 ! ! {0,1}5 f, ! At-Most-One



Holant problem: O0W T(G/F)
AN

graph family  function family

input : I =(G(V,E), {fv}viv) with S!, i
output :  PWTIYA D [ A (0 lew)
ol [q]# VIV

spin system / graph homomorphism (G.H.):
F={f:[q% C,d" 2d#{=}

f

o #IS, #VC
* #fg-colorings, #H-colorings IZ ::>

* hardcore/lsing/Potts models, MRF  _,,

spin model holant



Holant Problems

Holant problem: 0W T(IG/F)
AN

graph family  function family

characterize the tractability of O W T(IG/F) by G and F

Bad news: for general/planar G almost all nontrivial F: #P-hard
(Dyer-Greenhill’00, Bulatov-Grohe’05, Dyer-Goldberg’07, Bulatov’08, Goldberg-Grohe-Jerrum’10, Cai-Chen’10,
Cai-Chen-Lu’10, Cai-Lu-Xia’10, Dyer-Richerby’10, Dyer-Richerby’11, Cai-Chen’12, Cai-Lu-Xia’13)

Good news: tractable if Cis tree, F is Spin or Matching

(arity! 2/a'nd =) (At-Mvést-One)

Our result:

C is planar (Iocallg(e a tree)

Fis regular  (lik m&EPTAS

correlation decay (local info is enough)




Gibbs Measure

| = (GV,E){foluv) fu:[d"M91 Ry

PWTIYVE Y [ A (olew)

ol [q]" vV

' |
Gibbs measure: 8@ ) = v v vl lew)

PWTIV\
marginal probability: !'a! [d* A! E
8d(e)=c|!a)
self-
compute reduction | FPTAS for

8E(e)=c|"a) %
in time X W) <::{> PWTl)




Correlation Decay

strong spatial mixing (SSM):  !!g " [d]°
8@ (e)=c|!a)! 8E(e)=c|!a,!B)
L XWIVH M (X! (1))

SSM: sufficiency of local information
for approx.of 8@ (e)=c|!a)

(,) efficiency of
- local computation

(FPTAS)

such implication was known for:
~Spin (Weitz’06)
g=2, F is

Matching
(Bayati-Gamarnik-Katz-Nair-Tetali’08)




Regularity

Pinning:  symmetric f :[q°! C ! [qf
8QW)=9 where g:[q¥*! C
e, g = ek )

when =2 write f =[fg,fq,...,f4]
where f; = f(!) that |1 11 = | C

a fami‘y F of syﬁw“ﬁ*wﬂefi'ic functions is regular it
l afiniteC st. 'f " F, fis C-regular

[fo,f1,f2,..., fi,..., far 1,fdl examples: bounded-arity
di k+1 equality [1,0,...,0,1]

COunterexample: [P:,,.#;% 1, P:,,.#;%] at-most-one [1 1 ,O,...,O]
d g cyclic [a,b,c,a,b,c,...]



Holant can be computed - r is Spin (junction-tree BP)

L a0\
in time X W) &2 - if F has bounded-arity

(tensor network, Markov-Shi’09)

 Theorem |
If 7 is regular, then P W TGWYy}viv ! F)
can be computed in time X WV § 42°('+MM LR}

Theorem Il

If C is planar (apex-minor-free), F is regular, then
SSM => FPTAS for 0 W T(G/F)



~ Theorem |
If 7 is regular, then P W TGWYy}viv ! F)
can be computed in time X WV § 42°('+MM LR}

SSM: ‘8@ (e =c|!pa)! 8 =cl|!a,!'s)" XWVH M(Xt)

compute
8@ ()= c|"a) % 2 PPTAS

n

Theorem (Demaine-Hajiaghayi’'04)
For apex-minor-free graphs,
treewidth of t-ball is O(t).

Theorem Il

If C is planar (apex-minor-free), F is regular, then
SSM => FPTAS for O W T(G/F)



Theorem |
If 7 is regular, then P W TGWYy}viv ! F)
can be computed in time X WV § 42°('+MM LR}

tree-decomposition:
a tree of “bags” of vertices:

|.Every vertex is in some bag.

2.Every edge is in some bag.

3.If two bags have a same vertex,
A B B F then all bags in the path between
: them have that vertex.

width: max bag size -1

C -©\ treewidth: width of optimal
tree decomposition



Separator-Decomposition Tg of G(V, E):
each node i ! Tg corresponds to (Vi,Si)

Vzww\V - _ _
such that Vzwiw V. and Ve
S E " is a vertex separator
. of Vi, W ! Vi in G[Vi]
1'V; is vertex boundary of V; in G[Vj]

width: U TS|, |' Vi[}
I!TG

separator-width sw(G) :
width of optimal Tg

Theorem:
sw(G) = ! (tw(G)) and
Te can be constructed
| | in time X W) &2° (W ()



Theorem |
If 7 is regular, then P W TGWYy}viv ! F)
can be computed in time X WV § 42°('+MM LR}

conditional independence:

00

8. |'s) and 8€R |!5S)

are independent for fixed ! s

Si : vertex separator
I 'V : vertex boundary

S : edge separator



Peering: given f :[q%! C !'! [q
SMNFX:[gf! {0,1} defined as

1 8QW)= 8QY¥)
0O W

e, sMINFX(!) =

8MINFZ={!! [q°]| 8Q¥)= 8Q(¥)}

peering classifies configurations around a vertex into equivalent classes

states of a vertex: peer classes

fv(!"# ) depends only on
peer classes of !, ,#

Holant value can be figured out by
keeping track of only peer classes

for regular f, # of peer classes
is always finite



Algorithmic Implications

applying the SSM obtained by a “decay-only” technique
recursive coupling (Goldberg-Martin-Paterson’05),

we have FPTAS for:

® #(-coloring of triangle-free planar graphs of max-
degree ! for g>1.76322! -0.47031

® ferromagnetic Ising model with temperature ! and

field B on planar graphs of max-degree ! , when

- 2
| < 1 e B¢ 2B

4 e!B+e!!B

® ferromagnetic Potts model with temperature ! on
planar graphs of max-degree ! for | = Q(1)

(conjectured by Gamarnik-Katz’06)



Conclusions and Open Problems

for Holant problems defined by regular constraints:

® 3 poly(n)a2treewidih time algorithm for
exact computation;

® SSM implies FPTAS on planar graphs.

open problems:

® in terms of reliance on treewidth, tightness
of 2W for regular Holant and n¥ for all
symmetric Holant (under some assumption);

® using SSM for FPTAS on general graphs.



