Approximate Counting via Correlation Decay on Planar Graphs

Yitong Yin
Nanjing University

Chihao Zhang Shanghai Jiaotong University

Holant Problems

(Valiant 2004)

instance:
$$\Omega = (G(V, E), \{f_v\}_{v \in V})$$

graph G=(V,E)

vertices: constraints (arity=degree)

symmetric
$$f_v:[q]^{\deg(v)}\to\mathbb{C}$$

configuration (solution, coloring, ...): $\sigma \in [q]^E$

holant (counting):

$$\operatorname{holant}(\Omega) = \sum_{\sigma \in [q]^E} \prod_{v \in V} f_v \left(\sigma \mid_{E(v)} \right)$$

#matchings: q=2 $\sigma \in \{0,1\}^E$ $f_v \equiv AT-MOST-ONE$

Holant problem: Holant(\mathcal{G}, \mathcal{F})

graph family function family

input:
$$\Omega=(G(V,E),\{f_v\}_{v\in V})$$
 with $\begin{cases}G\in\mathcal{G}\\f_v\in\mathcal{F}\end{cases}$

output: holant
$$(\Omega) = \sum_{\sigma \in [q]^E} \prod_{v \in V} f_v \left(\sigma \mid_{E(v)}\right)$$

spin system / graph homomorphism (G.H.):

$$\mathcal{F} = \{ f : [q]^d \to \mathbb{C}, d \le 2 \} \cup \{ = \}$$

- #IS, #VC
- #q-colorings, #H-colorings
- hardcore/Ising/Potts models, MRF

Holant Problems

Holant problem: Holant(\mathcal{G}, \mathcal{F})
graph family function family

characterize the tractability of Holant(G, F) by G and F

Bad news: for general/planar *G*, almost all nontrivial *F*: #P-hard (Dyer-Greenhill'00, Bulatov-Grohe'05, Dyer-Goldberg'07, Bulatov'08, Goldberg-Grohe-Jerrum'10, Cai-Chen'10, Cai-Chen-Lu'10, Cai-Lu-Xia'10, Dyer-Richerby'10, Dyer-Richerby'11, Cai-Chen'12, *Cai-Lu-Xia*'13)

Good news: tractable if G is tree, F is Spin or Matching

(arity≤2 and =) (At-Most-One)

Our result:

G is planar (locally like a tree)

F is regular

correlation decay (local info is enough)

Gibbs Measure

$$\Omega = (G(V, E), \{f_v\}_{v \in V}) \qquad f_v : [q]^{\deg(v)} \to \mathbb{R}_{\geq 0}$$

$$\operatorname{holant}(\Omega) = \sum_{\sigma \in [q]^E} \prod_{v \in V} f_v \left(\sigma \mid_{E(v)} \right)$$

Gibbs measure:
$$\Pr(\sigma) = \frac{\prod_{v \in V} f_v(\sigma|_{E(v)})}{\text{holant}}$$

marginal probability:
$$\sigma_A \in [q]^A$$
 $A \subset E$ $\Pr(\sigma(e) = c \mid \sigma_A)$

compute

$$\Pr(\sigma(e) = c \mid \tau_A) \pm \frac{1}{n}$$
 in time $\operatorname{poly}(n)$

self-

reduction FPTAS for

 $holant(\Omega)$

Correlation Decay

strong spatial mixing (SSM): $\forall \sigma_B \in [q]^B$

$$\left| \Pr(\sigma(e) = c \mid \sigma_A) - \Pr(\sigma(e) = c \mid \sigma_A, \sigma_B) \right|$$

$$\leq \operatorname{poly}(|V|) \exp(-\Omega(t))$$

SSM: sufficiency of local information

for approx. of
$$\Pr(\sigma(e) = c \mid \sigma_A)$$

efficiency of local computation (FPTAS)

such implication was known for:

$$q=2$$
, \mathcal{F} is
$$\begin{cases} Spin (Weitz'06) \\ Matching \end{cases}$$

(Bayati-Gamarnik-Katz-Nair-Tetali'08)

Regularity

Pinning: symmetric
$$f:[q]^d \to \mathbb{C}$$
 $\tau \in [q]^k$

$$\operatorname{Pin}_{\tau}(f) = g$$
 where $g: [q]^{d-k} \to \mathbb{C}$

$$\forall \sigma \in [q]^{d-k}, \quad g(\sigma) = f(\sigma_1, \dots, \sigma_{d-k}, \tau_1, \dots, \tau_k)$$

when q=2 write
$$f=[f_0,f_1,\ldots,f_d]$$
 where $f_i=f(\sigma)$ that $\|\sigma\|_1=i$

a family \mathcal{F} of symmetric functions is regular if

 \exists a finite C s.t. $\forall f \in \mathcal{F}$, f is C-regular

$$\underbrace{[f_0,f_1,f_2,\ldots,f_i,\ldots,f_{d-1},f_d]}_{d-k+1}$$

counterexample:
$$[\underbrace{0,\dots,0}_{\frac{d}{2}},1,\underbrace{0,\dots,0}_{\frac{d}{2}}]$$

examples: bounded-arity equality [1,0,...,0,1] at-most-one [1,1,0,...,0] *cyclic* [*a*,*b*,*c*,*a*,*b*,*c*,...]

Holant can be computed in time $poly(n) \cdot 2^{tw}$ if \mathcal{F} is Spin (junction-tree BP) $\mathcal{F} \text{ has bounded-arity}$ (tensor network, Markov-Shi'09)

Theorem I

If \mathcal{F} is regular, then $\operatorname{holant}(G, \{f_v\}_{v \in V} \subset \mathcal{F})$ can be computed in time $\operatorname{poly}(|V|) \cdot 2^{O(\operatorname{treewidth}(G))}$

Theorem II

If G is planar (apex-minor-free), F is regular, then SSM \Rightarrow FPTAS for Holant(G, F)

Theorem I

If \mathcal{F} is regular, then $\operatorname{holant}(G,\{f_v\}_{v\in V}\subset\mathcal{F})$ can be computed in time $\operatorname{poly}(|V|)\cdot 2^{O(\operatorname{treewidth}(G))}$

$$\textbf{SSM:} \quad \left| \Pr(\sigma(e) = c \mid \sigma_A) - \Pr(\sigma(e) = c \mid \sigma_A, \sigma_B) \right| \leq \operatorname{poly}(|V|) \exp(-t)$$

compute

$$\Pr(\sigma(e) = c \mid \tau_A) \pm \frac{1}{n}$$
 in time $\operatorname{poly}(n)$ FPTAS for Holant

Theorem (Demaine-Hajiaghayi'04) For apex-minor-free graphs, treewidth of t-ball is O(t).

Theorem II

If G is planar (apex-minor-free), F is regular, then SSM \Rightarrow FPTAS for Holant(G, F)

Theorem I

If \mathcal{F} is regular, then $\operatorname{holant}(G,\{f_v\}_{v\in V}\subset\mathcal{F})$ can be computed in time $\operatorname{poly}(|V|)\cdot 2^{O(\operatorname{treewidth}(G))}$

tree-decomposition:

a tree of "bags" of vertices:

- I. Every vertex is in some bag.
- 2. Every edge is in some bag.
- 3. If two bags have a same vertex, then all bags in the path between them have that vertex.

width: max bag size -1

treewidth: width of optimal tree decomposition

Separator-Decomposition T_G of G(V, E):

each node $i \in T_G$ corresponds to (V_i, S_i)

$$V_{
m root} = V_{
m constant}$$

such that
$$\left\{ \right.$$

such that $\begin{cases} V_{
m root} = V \ \ {
m and} \ \ V_{
m leaf} = \emptyset \\ S_i
eq \emptyset \ \ {
m is a vertex separator} \end{cases}$ of $V_j, V_k \subset V_i$ in $G[V_i]$

 ∂V_i is vertex boundary of V_i in $G[V_i]$

width:
$$\max_{i \in T_G} \{|S_i|, |\partial V_i|\}$$

separator-width sw(G): width of optimal T_G

Theorem:

$$sw(G) = \Theta(tw(G))$$
 and T_G can be constructed in time $poly(n) \cdot 2^{O(tw(G))}$

Theorem I

If \mathcal{F} is regular, then $\operatorname{holant}(G,\{f_v\}_{v\in V}\subset\mathcal{F})$ can be computed in time $\operatorname{poly}(|V|)\cdot 2^{O(\operatorname{treewidth}(G))}$

conditional independence:

 $\Pr(\sigma_L \mid \sigma_S)$ and $\Pr(\sigma_R \mid \sigma_S)$ are independent for fixed σ_S

 S_i : vertex separator

 ∂V_i : vertex boundary

S: edge separator

$$\begin{array}{ll} \textbf{Peering:} & \text{given} \ \ f:[q]^d \to \mathbb{C} & \tau \in [q]^k \\ & \operatorname{Peer}_\tau(f):[q]^k \to \{0,1\} & \text{defined as} \\ \forall \sigma \in [q]^k, & \operatorname{Peer}_\tau(f)(\sigma) = \begin{cases} 1 & \operatorname{Pin}_\sigma(f) = \operatorname{Pin}_\tau(f) \\ 0 & \text{o.w.} \end{cases} \end{array}$$

$$\operatorname{Peer}_{\tau}(f) = \{ \sigma \in [q]^k \mid \operatorname{Pin}_{\sigma}(f) = \operatorname{Pin}_{\tau}(f) \}$$

peering classifies configurations around a vertex into equivalent classes

states of a vertex: peer classes

 $f_v(\sigma au
ho)$ depends only on peer classes of $\sigma, au,
ho$

Holant value can be figured out by keeping track of only peer classes

for regular f, # of peer classes is always finite

Algorithmic Implications

applying the SSM obtained by a "decay-only" technique recursive coupling (Goldberg-Martin-Paterson'05), we have FPTAS for:

- #q-coloring of triangle-free planar graphs of max-degree Δ for q>1.76322 Δ 0.47031
- ferromagnetic Ising model with temperature β and field B on planar graphs of max-degree Δ , when

$$\Delta < \frac{1}{4} \left(\frac{e^{2\beta B} + e^{-2\beta B}}{e^{\beta B} + e^{-\beta B}} \right)^2$$

• ferromagnetic Potts model with temperature β on planar graphs of max-degree Δ for $\beta = O(\frac{1}{\Delta})$

(conjectured by Gamarnik-Katz'06)

Conclusions and Open Problems

for Holant problems defined by regular constraints:

- a poly(n) · $2^{treewidth}$ time algorithm for exact computation;
- SSM implies FPTAS on planar graphs.

open problems:

- in terms of reliance on treewidth, tightness of 2^{tw} for regular Holant and *n*^{tw} for all symmetric Holant (under some assumption);
- using SSM for FPTAS on general graphs.