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Holant Problems
(Valiant 2004)

instance: Q= (G(V, E), {fo}vev)

.- ~~

graph G=(V,E) edges: variables (domain [q])

vertices: constraints (arity=degree)

symmetric [y : g5 — C

configuration (solution, coloring, ...): o € [q]”

holant (counting):

holant(£2) = Z H fo (0 |EMW))
o€lq]

EyeV

#matchings: @=2 o €{0,1}* f, =AT-MOST-ONE



Holant problem: Holant(G, F)
A K

graph family  function family

input:. Q= (G(V,F),{f,}vey) with {

output: holant({2 Z H fo (0 |E@w))
EoyeV

spin system / graph homomorphlsm (G.H.):

F={f:ld"~Cd<2}u{=}

o #IS, #VC
* #fg-colorings, #H-colorings

* hardcore/lsing/Potts models,

MRF

f

/]

G=(V,E)

spin model

-

Geg
fo € F

holant



Holant Problems

Holant problem: Holant(G, F)
A X

graph family  function family

characterize the tractability of Holant(G, F) by G and F

Bad news: for general/planar G, almost all nontrivial F: #P-hard
(Dyer-Greenhill’00, Bulatov-Grohe’05, Dyer-Goldberg’07, Bulatov’08, Goldberg-Grohe-Jerrum’10, Cai-Chen’10,
Cai-Chen-Lu’10, Cai-Lu-Xia’10, Dyer-Richerby’10, Dyer-Richerby’11, Cai-Chen’12, Cai-Lu-Xia’13)

Good news: tractable if G is tree, F is Spin or Matching

(arity<2 /a'nd =) (At-Mvést-One)

Our result:

G is planar (locally like a tree)
F is regular iH:;/ mialPchAS)

correlation decay [local info is enough)




Gibbs Measure

Q= (GV,E), {folvev)  fo:q%® = Rxg

holant(€2 Z H fo (0 |E(w))

o€lq|F veV
Gibbs measure: Pr(o) = ey JololBw)
holant
marginal probability: o4 € qd* AcE

Pr(o(e) =c| oa)

self-
compute reduction | FPTAS for

Pr(o(e) =c| T4) = iﬁ>
in time poly (n) holant({2)

S|




Correlation Decay

strong spatial mixing (SSM):  Vop € [q]”

‘Pr(c(e) =c|oa)—Pr(o(e) = ¢ OAvJB)l

< poly(|V]) exp(—£2(?))
SSM: sufficiency of local information

for approx.of Pr(c(e) =c|o4)

(,) efficiency of
- local computation

(FPTAS)

such implication was known for:

5 . Spin (Weitz’06)
=2, J is { Matching
(Bayati-Gamarnik-Katz-Nair-Tetali’08)




Regularity

Pinning: symmetric f:[¢" = C 7€ q"
Pin,(f) =g where g:[¢]* " = C
Vo & [Q]d_ka g(O-):f(0-17°'°70-d—k77_17°°°777€)

when q=2 write [ = [fo, fi1,...,
where f; = f(o) that ||o||; =1 C

a fami‘y F of syﬁw“ﬁ*wﬂefi'ic functions is regular it
J afinite C s.t. Vf € F, fis C-regular

fo, fi. fo, ooy fiso ooy fa—1, fd examples: bounded-arity
RS equality [1,0,...,0,1]
counterexample: [0....,0,1,0,...,0]  at-most-one [1,1,0,...,0]

cyclic [a,b,c,a,b,c,...]

d
2



Holant can be computed - r s Spin (junction-tree BP)
in time poly(n) - 2" if <

. F has bounded-arity
(tensor network, Markov-Shi’09)

Theorem I

If F is regular, then holant(G,{f,},ev C F)
can be computed in time poly(|V|) - 20 (treewidth(G))

Theorem 11

If G is planar (apex-minor-free), F is regular, then
SSM => FPTAS for Holant(G, F)



Theorem I

If F is regular, then holant(G,{f,},ev C F)
can be computed in time poly(|V|) - 20 (treewidth(G))

SSM: |Pr(c(e) =c | oa) —Pr(o(e) =c| oa,08)| < poly(|V]) exp(—t)
compute
Pr(o(e) = ¢ | 74) % L FPTAS
in time poly (n)

Theorem (Demaine-Hajiaghayi’04)
For apex-minor-free graphs,
treewidth of t-ball is O(1).

Theorem 11

If G is planar (apex-minor-free), F is regular, then
SSM = > FPTAS for Holant(G, F)



Theorem 1

If F is regular, then holant(G,{f,},ev C F)
can be computed in time poly(|V|) - 20 (treewidth(G))

tree-decomposition:
a tree of “bags” of vertices:

|.Every vertex is in some bag.

2.Every edge is in some bag.

3.If two bags have a same vertex,
A B B F then all bags in the path between
: them have that vertex.

width: max bag size -1

C -©\ treewidth: width of optimal
tree decomposition



Separator-Decomposition Tg of G(V, E):
each node ¢ € I corresponds to (Vi, S%)
Vioot = V. ‘ __ _
such that { /oot = V7 and Viear =1
| S; # (is a vertex separator
. of ‘/jvvk C ‘/; in G[V;,
0V; is vertex boundary of V;in G|V;]

width: max{|S;|, |0V;|}
1€1¢

separator-width sw(Q) :
width of optimal 7

Theorem:
sw(G) = O(tw(G)) and

I can be constructed

in time poly(n) - 20(tw(&)



Theorem I

If F is regular, then holant(G,{f,},ev C F)
can be computed in time poly(|V|) - 20 (treewidth(G))

conditional independence:

00

Pr(or, | 0s) and Pr(ogr | os)

are independent for fixed 05

Si :vertex separator
OV : vertex boundary

S : edge separator



Peering: given f:[g]* = C T¢€ q]"

Peer,(f) : [q)" — {0,1} defined as
Vo € [q]", Peer, (f)(o) = {1 Pin,(f) = Pin-(f)

0 o.w.

Peer,(f) = {0 € [¢]" | Pin,(f) = Pin,(f)}

peering classifies configurations around a vertex into equivalent classes

states of a vertex: peer classes

fv(07Tp) depends only on
peer classes of o, 7, p

Holant value can be figured out by
keeping track of only peer classes

for regular f,# of peer classes
is always finite



Algorithmic Implications

applying the SSM obtained by a “decay-only” technique
recursive coupling (Goldberg-Martin-Paterson’05),

we have FPTAS for:

® #Qg-coloring of triangle-free planar graphs of max-

degree A for g>1.76322 A - 0.47031

® ferromagnetic Ising model with temperature 8 and
field B on planar graphs of max-degree A, when
2
1 [ o28B_ .—28B
A< 4 ( eBB Le— BB )
® ferromagnetic Potts model with temperature (3 on

planar graphs of max-degree A for 8= O(%)

(conjectured by Gamarnik-Katz’06)



Conclusions and Open Problems

for Holant problems defined by regular constraints:

® 3 poly(n) - 2treewidth time algorithm for
exact computation;

® SSM implies FPTAS on planar graphs.

open problems:

® in terms of reliance on treewidth, tightness
of 2W for regular Holant and N for all
symmetric Holant (under some assumption);

® using SSM for FPTAS on general graphs.



