Phase Transition of Hypergraph Matchings

Yitong Yin
Nanjing University

Joint work with: Jinman Zhao (Nanjing Univ. / U Wisconsin)
hardcore model monomer-dimer model
undirected graph
$G=(V, E)$
activity λ
configurations: independent sets I

weight:

matchings M

$$
\begin{array}{l|l}
w(I)=\lambda^{|l|} & w(M)=\lambda^{|m|}
\end{array}
$$

$$
Z=\Sigma_{M: \text { manchings in } G} w(M)
$$

Gibbs distribution: $\quad \mu(I)=w(I) / Z$
approximate counting: FPTAS/FPRAS for Z
sampling: sampling from μ within TV-distance ε in time $\operatorname{poly}(n, \log 1 / \varepsilon)$

Decay of Correlation (Weak Spatial Mixing, WSM)

hardcore model:

$$
I \sim \mu
$$

boundary condition σ : fixing leaves at level l to be occupied/unoccupied by I
WSM: $\operatorname{Pr}[v \in I \mid \sigma]$ does not depend on σ when $l \rightarrow \infty$
uniqueness threshold: $\quad \lambda_{c}=\frac{d^{d}}{(d-1)^{(d+1)}}$

- $\lambda \leq \lambda_{c} \Leftrightarrow$ WSM holds on ($d+1$)-regular tree \Leftrightarrow Gibbs measure is unique
- [Weitz '06]: $\lambda<\lambda_{c} \Rightarrow$ FPTAS for graphs with max-degree $\leq d+1$
- [Galanis, Štefankovič,Vigoda ‘12; Sly, Sun ‘12]: $\lambda>\lambda_{c} \Rightarrow$ inapproximable unless NP=RP

Decay of Correlation (Weak Spatial Mixing, WSM)

monomer-dimer model:
$M \sim \mu$

boundary condition σ : fixing leaf-edges at level l to be occupied/unoccupied by M
WSM: $\operatorname{Pr}[e \in M \mid \sigma]$ does not depend on σ when $l \rightarrow \infty$

- WSM always holds \Leftrightarrow Gibbs measure is always unique
- [Jerrum, Sinclair '89]: FPRAS for all graphs
- [Bayati, Gamarnik, Katz, Nair, Tetali ’08]: FPTAS for graphs with bounded max-degree

CSP (Constraint Satisfaction Problem)

max-degree $\leq d$

CSP (Constraint Satisfaction Problem)

max-degree $\leq d$

degree
$\leq d$

matching constraint (at-most-1)
variables $x_{i} \in\{0,1\} \quad \begin{array}{r}\text { matching constr } \\ \text { (at-most-1) }\end{array}$
partition function:

$$
Z=\sum_{\substack{\vec{x} \in\{0,1\}^{n} \text { satisfying } \\ \text { all constraints }}} \lambda^{\|\vec{x}\|_{1}}
$$

CSP (Constraint Satisfaction Problem)

Hypergraph matching

hypergraph $\quad \mathcal{H}=(V, E) \quad$ vertex set V
hyperedge $e \in E, \quad e \subset V$
a matching is an subset $M \subset E$ of disjoint hyperedges

partition
functions:

$$
Z_{\lambda}(\mathcal{H})=\sum_{M: \text { matching of } \mathcal{H}} \lambda^{|M|}
$$

Gibbs distribution: $\quad \mu(M)=\frac{\lambda^{|M|}}{Z_{\lambda}(\mathcal{H})}$
matchings in hypergraphs of max-degree $\leq k+1$ and max-edge-size $\leq d+1$
primal:

incidence graph
dual:

independent sets in hypergraphs of max-degree $\leq d+1$ and max-edge-size $\leq k+1$
independent sets: a subset of non-adjacent vertices
(to be distinguished with: vertex subsets containing no hyperedge as subset)

Known results

Classification of approximability in terms of λ, d, k ?

- $k=1$: hardcore model
- $d=1$: monomer-dimer model
- for $\lambda=1$:
- [Dudek, Karpinski, Rucinski, Szymanska 2014]: FPTAS when $d=2, k \leq 2$
- [Liu and Lu 2015] FPTAS when $d=2, k \leq 3$

Our Results

$\operatorname{deg} \leq d+1$
independent sets of hypergraphs of max-degree $\leq d+1$ and max-edge-size $\leq k+1$

partition function:

- uniqueness threshold for $(k+1)$-uniform $(d+1)$-regular infinite hypertree:

$$
\lambda_{c}(k, d)=\frac{d^{d}}{k(d-1)^{d+1}}
$$

- $\lambda<\lambda_{c}$: FPTAS
- $\lambda>\frac{2 k+1+(-1)^{k}}{k+1} \lambda_{c} \approx 2 \lambda_{c}$: inapproximable unless NP=RP
$\lambda=1:$ matchings of hypergraphs of max-degree $(k+1)$ and max-edge-size $(d+1)$ independent sets of hypergraphs of max-degree $(d+1)$ and max-edge-size $(k+1)$ k

uniqueness threshold:

$$
\lambda_{c}=\frac{d^{d}}{k(d-1)^{(d+1)}}
$$

threshold for hardness:

$$
\frac{2 k+1+(-1)^{k}}{k+1} \lambda_{c} \approx 2 \lambda_{c}
$$

$(4,2)$: independent sets of 3-uniform hypergraphs of max-degree 5 , the only open case for counting Boolean CSP with max-degree 5.
$(2,4)$: matchings of 3 -uniform hypergraphs of max-degree 5 , exact at the critical threshold: $\frac{d^{d}}{k(d-1)^{(d+1)}}=\frac{2^{2}}{4 \cdot 1^{5}}=1$

Spatial Mixing (Decay of Correlation)

weak spatial mixing (WSM):

$$
\begin{gathered}
\operatorname{Pr}\left[v \text { is occupied } \mid \sigma_{\partial R}\right] \approx \operatorname{Pr}\left[v \text { is occupied } \mid \tau_{\partial R}\right] \\
\text { error }<\exp (-t)
\end{gathered}
$$

strong spatial mixing (SSM):
$\operatorname{Pr}\left[v\right.$ is occupied $\left.\mid \sigma_{\partial R}, \sigma_{\Lambda}\right] \approx \operatorname{Pr}\left[v\right.$ is occupied $\left.\mid \tau_{\partial R}, \sigma_{\Lambda}\right]$

by self-reduction:

$$
\operatorname{Pr}\left[v \text { is occupied } \mid \sigma_{\Lambda}\right]
$$

is approximable with additive error ε in time poly $(n, 1 / \varepsilon)$

FPTAS for partition function Z

Hardcore model:

random regular bipartite graph
 with parity-preserving symmetry for hypergraph:

- on infinite regular tree: Gibbs measure is unique \Longleftrightarrow

Similar... semi-translation invariant (invariant under parity-preserving

 automorphisms) Gibbs measure is uniqueYes. - algorithm: Gibbs measure is unique on regular tree <jenerf WSM on regular tree \Longleftrightarrow SSM on trees

No. - hardness: a sequence of finite graphs G_{n} (random regular bipartite graph) is locally like the infinite regular tree

- a sequence of labeled G_{n} locally converges to the infinite regular tree with parity labeling

Theorem: $\lambda \leq \lambda_{c}(k, d)=\frac{d^{d}}{k(d-1)^{d+1}}$
\checkmark WSM holds for $(k+1)$-uniform $(d+1)$-regular hypertree

Theorem: on infinite uniform regular hypertree WSM \Rightarrow SSM

Theorem:
 on infinite (k, d)-hypertree SSM

 SSM with exponential rate

 for ($\leq k, \leq d$)-hypergraphs SSM with the same rate FPTAS

all statements are for hypergraph independent sets

Tree Recursion

let $R_{T}=\frac{\operatorname{Pr}[v \text { is occupied } \mid \sigma]}{\operatorname{Pr}[v \text { is unoccupied } \mid \sigma]}$ tree recursion:

$$
R_{T}=\lambda \prod_{i=1}^{d} \frac{1}{1+\sum_{j=1}^{k_{i}} R_{T_{i j}}}
$$

monomer-dimer model:

$$
R_{T}=\frac{\lambda}{1+\sum_{j=1}^{k} R_{T_{j}}}
$$

hardcore model:

$$
R_{T}=\lambda \prod_{i=1}^{d} \frac{1}{1+R_{T_{i}}}
$$ independent sets of hypertree T :

let $R_{T}=\frac{\operatorname{Pr}[v \text { is occupied } \mid \sigma]}{\operatorname{Pr}[v \text { is unoccupied } \mid \sigma]}$
tree recursion: $\quad R_{T}=\lambda \prod_{i=1}^{d} \frac{1}{1+\sum_{j=1}^{k_{i}} R_{T_{i j}}}$
Theorem: $\lambda \leq \lambda_{c}(k, d)=\frac{d^{d}}{k(d-1)^{d+1}}$
WSM holds for $(k+1)$-uniform ($d+1$)-regular hypertree

monotonicity of the recursion
 the 2 extremal boundaries at level- l are all occupied / all unoccupied
the recursion becomes $R_{\ell}=\lambda \prod_{i=1}^{d} \frac{1}{1+k R_{\ell-1}}$
whose convergence is the same as hardcore model: $R_{\ell}^{\prime}=\lambda^{\prime} \prod_{i=1} \frac{1}{1+R_{\ell-1}^{\prime}}$
with activity $\lambda^{\prime}=k \lambda$

Theorem: $\lambda \leq \lambda_{c}(k, d)=\frac{d^{d}}{k(d-1)^{d+1}}$
\checkmark WSM holds for $(k+1)$-uniform $(d+1)$-regular hypertree

Theorem: on infinite uniform regular hypertree WSM \Rightarrow SSM

Theorem:

on infinite (k, d)-hypertree SSM

SSM with exponential rate
for ($\leq k, \leq d$)-hypergraphs SSM with the same rate FPTAS

Self-Avoiding Walk Tree

 (Weitz 2006)$$
G=(V, E)
$$

for hardcore:

$$
\begin{aligned}
& \mathbb{P}_{G}\left[v \text { is occupied } \mid \sigma_{\Lambda}\right] \\
= & \mathbb{P}_{T}\left[v \text { is occupied } \mid \sigma_{\Lambda}\right]
\end{aligned}
$$

if cycle closing > cycle starting if cycle closing < cycle starting

Hypergraph SAW Tree

self-avoiding walk(SAW): $\left(v_{0}, e_{1}, v_{1}, \ldots, e_{\ell}, v_{\ell}\right)$ is a simple path in incidence graph and $v_{i} \notin \bigcup_{j<i} e_{i}$

mark any cycle-closing vertex unoccupied if: cycle-closing edge locally < cycle-starting edge and occupied if otherwise

let $R_{T}=\frac{\operatorname{Pr}[v \text { is occupied } \mid \sigma]}{\operatorname{Pr}[v \text { is unoccupied } \mid \sigma]}$
tree recursion:

$$
R_{T}=\lambda \prod_{i=1}^{d} \frac{1}{1+\sum_{j=1}^{k_{i}} R_{T_{i j}}}
$$

Theorem:

on infinite ($k+1, d+1$)-hypertree for ($\leq k+1, \leq d+1$)-hypergraphs

SSM

SSM with exponential rate

\checkmark FPTAS

Theorem: $\lambda \leq \lambda_{c}(k, d)=\frac{d^{d}}{k(d-1)^{d+1}}$
\checkmark WSM holds for $(k+1)$-uniform $(d+1)$-regular hypertree

Theorem: on infinite uniform regular hypertree WSM \leftrightarrows SSM

Theorem:

on infinite $(k+1, d+1)$-hypertree for $(\leq k+1, \leq d+1)$-hypergraphs
SSM SSM with the same rate
SSM with exponential rate
 FPTAS

Theorem: on infinite uniform regular hypertree WSM \Rightarrow SSM
T : the infinite uniform regular hypertree
R_{ℓ}^{+}: the max value of R_{T} conditioning on a boundary at level- l
R_{ℓ}^{-}: the min value of R_{T} conditioning on a boundary at level- l

$$
R_{\ell}^{ \pm}=\frac{\lambda}{\left(1+k R_{\ell-1}^{\mp}\right)^{d}}
$$

$\vec{\lambda}$: the vector assigning each vertex a non-uniform activity $\leq \lambda$
$R_{\ell}^{+}(\vec{\lambda}), R_{\ell}^{-}(\vec{\lambda})$ are similarly defined

$$
\frac{R_{\ell}^{+}(\vec{\lambda})}{R_{\ell}^{-}(\vec{\lambda})} \leq \frac{R_{\ell}^{+}}{R_{\ell}^{-}}
$$

proved by induction on l with hypotheses:

$$
\frac{R_{\ell}^{+}(\vec{\lambda})}{R_{\ell}^{-}(\vec{\lambda})} \leq \frac{R_{\ell}^{+}}{R_{\ell}^{-}} \text {and } \frac{1+k R_{\ell}^{+}(\vec{\lambda})}{1+k R_{\ell}^{-}(\vec{\lambda})} \leq \frac{1+k R_{\ell}^{+}}{1+k R_{\ell}^{-}}
$$

sandwiching property: $R_{\ell}^{-} \leq R_{\ell-1}^{-} \leq R_{\ell-1}^{+} \leq R_{\ell}^{+}$
with some extra efforts to deal with hyperedges

Theorem: $\lambda \leq \lambda_{c}(k, d)=\frac{d^{d}}{k(d-1)^{d+1}}$
\checkmark WSM holds for $(k+1)$-uniform $(d+1)$-regular hypertree

Theorem: on infinite uniform regular hypertree WSM \Rightarrow SSM

Theorem:

on infinite $(k+1, d+1)$-hypertree for $(\leq k+1, \leq d+1)$-hypergraphs
SSM SSM with the same rate
SSM with exponential rate
 FPTAS

- $\lambda<\lambda_{c}=\frac{d^{d}}{k(d-1)^{d+1}} \leadsto$ FPTAS
- $\lambda=\lambda_{c} \leadsto$ SSM with sub-poly rate

Inapproximability

Theorem: let $\lambda_{c}=\frac{d^{d}}{k(d-1)^{(d+1)}}$

$$
\lambda>\frac{2 k+1+(-1)^{k}}{k+1} \lambda_{c} \approx 2 \lambda_{c} \quad \text { no FPRAS unless NP=RP }
$$

reduction from hardcore model:
[folklore; Bordewich, Dyer, Karpinski 2008]
hardcore instance:
hypergraph instance:

$\lambda=1$: matchings of hypergraphs of max-degree $(k+1)$ and max-edge-size $(d+1)$ independent sets of hypergraphs of max-degree $(d+1)$ and max-edge-size $(k+1)$

Gibbs Measures

T : the infinite $(k+1)$-uniform ($d+1$)-regular hypertree μ is a measure over independent sets of T
μ is Gibbs: conditioning on any unoccupied finite boundary, the distribution over the truncated tree is the finite Gibbs distribution (DLR compatibility conditions)
μ is simple: conditioning on the root being unoccupied, the subtrees are independent of each other

$$
\begin{aligned}
& \mu[v \text { is occupied }] \quad(\mu \text { is Gibbs) } \\
= & \frac{\lambda}{1+\lambda} \cdot \mu[\text { all the neighbors of } v \text { are unoccupied }]
\end{aligned}
$$

$\mu[$ all the neighbors of v are unoccupied]
(μ is Simple)

$$
=\mu[v \text { is occupied }]+\mu[v \text { is unoccupied }] \prod_{i=1}^{d+1}\left(1-\sum_{j=1}^{k} \mu\left[v_{i j} \text { is occupied } \mid v \text { is unoccupied }\right]\right)
$$

Gibbs Measures

T : the infinite ($k+1$)-uniform ($d+1$)-regular hypertree μ is a simple Gibbs measure over independent sets of T

$$
\begin{aligned}
& \mu[v \text { is occupied }] \quad(\mu \text { is Gibbs }) \\
= & \frac{\lambda}{1+\lambda} \cdot \mu[\text { all the neighbors of } v \text { are unoccupied }]
\end{aligned}
$$

$\mu[$ all the neighbors of v are unoccupied]
(μ is Simple)
$=\mu[v$ is occupied $]+\mu[v$ is unoccupied $] \prod_{i=1}^{d+1}\left(1-\sum_{j=1}^{k} \mu\left[v_{i j}\right.\right.$ is occupied $\mid v$ is unoccupied $\left.]\right)$

$$
p_{v}=\lambda\left(1-p_{v}\right)^{-d} \prod_{i=1}^{d+1}\left(1-p_{v}-\sum_{j=1}^{k} p_{v_{i j}}\right) \quad \text { where } p_{v}=\mu[v \text { is occupied }]
$$

Uniqueness

$$
p_{v}=\lambda\left(1-p_{v}\right)^{-d} \prod_{i=1}^{d+1}\left(1-p_{v}-\sum_{j=1}^{k} p_{v_{i j}}\right)
$$

where $p_{v}=\mu[v$ is occupied $]$

assuming a symmetry:

- every blue vertex is incidents to 1 black edge and d white edges;
- every red vertex is incidents to 1 white edge and d black edges;
- every black edge contains k blue vertices and 1 red vertex;
- every white edge contains k red vertices and 1 blue vertex;
the system becomes: $\left\{\begin{array}{l}p_{\mathrm{b}}=\lambda\left(1-p_{\mathrm{b}}\right)^{-d}\left(1-k p_{\mathrm{b}}-p_{\mathrm{r}}\right)\left(1-p_{\mathrm{b}}-k p_{\mathrm{r}}\right)^{d} \\ p_{\mathrm{r}}=\lambda\left(1-p_{\mathrm{r}}\right)^{-d}\left(1-k p_{\mathrm{r}}-p_{\mathrm{b}}\right)\left(1-p_{\mathrm{r}}-k p_{\mathrm{b}}\right)^{d}\end{array}\right.$
$\lambda>\lambda_{c}(k, d)=\frac{d^{d}}{k(d-1)^{d+1}} \Rightarrow$ has three solutions $\frac{\left(p^{*}, p^{*}\right),\left(p^{+}, p^{-}\right),\left(p^{-}, p^{+}\right)}{\text {non-uniqueness! }}$
$\lambda \leq \lambda_{c}(k, d)=\frac{d^{d}}{k(d-1)^{d+1}} \Rightarrow$ has a unique solution $\left(p^{*}, p^{*}\right)$

Symmetry

Gibbs measure μ is invariant under automorphisms from a group G action of G classifies vertices and hyperedges into types (orbits)

VS.

Symmetry

Gibbs measure μ is invariant under automorphisms from a group G action of G classifies vertices and hyperedges into types (orbits)

$\tau_{v}: \#$ of types(oribits) for vertices
τ_{e} : \# of types(oribits) for hyperedges

hypergraph branching matrices:
 $\mathbf{D}=\left(d_{i j}\right)^{\tau_{v} \times \tau_{e}} \quad \mathbf{K}=\left(k_{j i}\right)^{\tau_{e} \times \tau_{v}}$

- each type- i vertex is incident to $d_{i j}$ hyperedges of type- j
- each type-j hyperedge contains $k_{j i}$ vertices of type- i
branching matrices completely characterize orbits of hypergraph automorphism groups

- every blue vertex is incidents to 1 black edge and d white edges;
- every red vertex is incidents to 1 white edge and d black edges;
- every black edge contains k blue vertices and 1 red vertex;
- every white edge contains k red vertices and 1 blue vertex;

$$
\mathbf{D}=\odot\left[\begin{array}{cc}
\square & \square \\
1 & d \\
d & 1
\end{array}\right] \quad \mathbf{K}=\square\left[\begin{array}{cc}
\circ & 0 \\
k & 1 \\
1 & k
\end{array}\right]
$$

- there are $k+1$ types of vertices;
- there is only 1 type of hyperedges;
- each hyperedge has 1 vertex for each type;

$$
\left.\mathbf{D}=\left[\begin{array}{c}
d+1 \\
\vdots \\
d+1
\end{array}\right]\right\} k+1 \quad \mathbf{K}=\underbrace{\left[\begin{array}{lll}
1 & \cdots & 1
\end{array}\right]}_{k+1}
$$

Local Convergence

fix a locally finite infinite hypergraph T and a labeling(orbits) \mathcal{C} for vertices and hyperedges:

Definition (Local Convergence)

a sequence of (random) finite hypergraph \mathcal{H}_{n} locally converges to $(\mathbb{T}, \mathscr{C})$ if there exists a labeling of vertices and hyperedges of \mathcal{H}_{n} such that for any $\mathrm{t}>0$, for random vertex v in \mathcal{H}_{n} and random vertex-type x in $(\mathbb{T}, \mathscr{C})$ the t-neighborhoods $N_{t}\left(v, \mathcal{H}_{n}\right)$ converges to $N_{t}(v, \mathbb{T})$ in distribution.
defined in [Montanari, Mossel, Sly 2012] [Sly, Sun 2012]

random regular bipartite graph

with parity labeling
plays a crucial role in establishing sharp transition of computational complexity:
[Dyer, Frieze, Jerrum '02]
[Mossel, Weitz, Wormald '09] [Sly '10] [Sly, Sun '12]
[Galanis, Ge, Štefankovič, Vigoda, Yang '11] [Galanis, Štefankovič, Vigoda '12 '14]

random ($k+1$)-uniform ($d+1$)-regular
$(k+1)$-partite hypergraph

Local Convergence

Theorem:

There exists a sequence of finite hypergraphs \mathcal{H}_{n} locally convergent to $(k+1)$-uniform ($d+1$)-regular infinite hypertree with branching matrices \mathbf{D}, \mathbf{K} if and only if Markov chain $\left[\begin{array}{cc}\mathbf{0} \\ \frac{1}{k+1} \boldsymbol{K} & \frac{1}{d+1} \boldsymbol{D}\end{array}\right]$ is time-reversible.
\exists distributions \boldsymbol{p} over vertex orbits and \boldsymbol{q} over hyperedge orbits satisfying the detailed balanced equation:

$$
p_{i} d_{i j}=q_{j} k_{j i}
$$

p must be a left Perron Eigenvector of DK
q must be a left Perron Eigenvector of KD

Local Convergence

Theorem:

There exists a sequence of finite hypergraphs \mathcal{H}_{n} locally convergent to $(k+1)$-uniform $(d+1)$-regular infinite hypertree with branching matrices \mathbf{D}, \mathbf{K} if and only if Markov chain $\left[\begin{array}{cc}\mathbf{0} \\ \frac{1}{k+1} \boldsymbol{K} & \frac{1}{d+1} \boldsymbol{D}\end{array}\right]$ is time-reversible.

$$
\left.\mathbf{D}=\left[\begin{array}{c}
d+1 \\
\vdots \\
d+1
\end{array}\right]\right\} k+1
$$

$$
\mathbf{K}=\underbrace{\left[\begin{array}{lll}
1 & \cdots & 1
\end{array}\right]}_{k+1}
$$

time-reversible

Local Convergence

Theorem:

There exists a sequence of finite hypergraphs \mathcal{H}_{n} locally convergent to $(k+1)$-uniform $(d+1)$-regular infinite hypertree with branching matrices \mathbf{D}, \mathbf{K} if and only if Markov chain $\left[\begin{array}{cc}\mathbf{0} \\ \frac{1}{k+1} \boldsymbol{K} & \frac{1}{d+1} \boldsymbol{D}\end{array}\right]$ is time-reversible.

$$
\mathbf{D}=\odot\left[\begin{array}{cc}
\square & \square \\
1 & d \\
d & 1
\end{array}\right] \quad \mathbf{K}=\square \square\left[\begin{array}{cc}
0 & 0 \\
k & 1 \\
1 & k
\end{array}\right]
$$

not time-reversible

Summary

independent sets of hypergraphs of max-degree $(d+1)$ and max-edge-size $(k+1)$

- uniqueness threshold for $(k+1)$-uniform $(d+1)$-regular infinite hypertree:

$$
\lambda_{c}(k, d)=\frac{d^{d}}{k(d-1)^{d+1}}
$$

- SAW-tree holds for the model
- hypertree are the worst-case for SSM
- $\lambda<\lambda_{c}$: FPTAS for the partition function
- $\lambda>2 \lambda_{\mathrm{c}}$: inapproximable (by simulating hardcore)
- local convergence exists if and only if time-reversibility is satisfied
- the extremal Gibbs measures achieving the uniqueness threshold are not realizable by finite hypergraphs
$\lambda=1:$ matchings of hypergraphs of max-degree $(k+1)$ and max-edge-size $(d+1)$ independent sets of hypergraphs of max-degree $(d+1)$ and max-edge-size $(k+1)$ k

uniqueness threshold:

$$
\lambda_{c}=\frac{d^{d}}{k(d-1)^{(d+1)}}
$$

threshold for hardness:

$$
\frac{2 k+1+(-1)^{k}}{k+1} \lambda_{c} \approx 2 \lambda_{c}
$$

- algorithmic technique which does not rely on decay of correlation?
- inapproximability which does not need local convergence?
- other extremal Gibbs measures with the same threshold?

Thank you!

Any questions?

