What can be sampled *locally*?

Yitong Yin Nanjing University

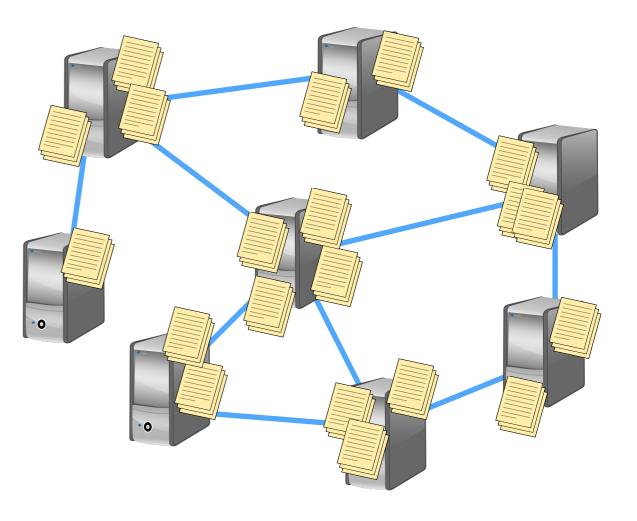
Joint work with: Weiming Feng, Yuxin Sun

Local Computation

"What can be computed locally?" [Noar, Stockmeyer, STOC'93, SICOMP'95]

the LOCAL model [Linial '87]:

- Communications are synchronized.
- In each round: each node can send messages of unbounded sizes to all its neighbors.
- Local computations are free.
- Complexity: # of rounds to terminate in the worst case.



• In *t* rounds: each node can collect information up to distance *t*.

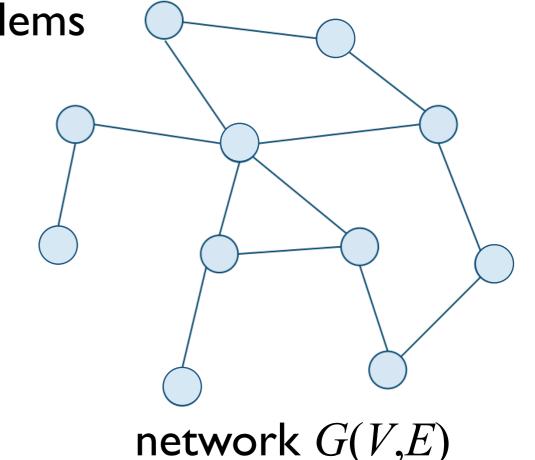
Local Computation

the **LOCAL** model [Linial '87]:

• In *t* rounds: each node can collect information up to distance *t*.

Locally Checkable Labeling (LCL) problems [Noar, Stockmeyer '93]:

- CSPs with local constraints.
- Construct a feasible solution: vertex/edge coloring, Lovász local lemma
 - Find local optimum: MIS, MM
 - Approximate global optimum: maximum matching, minimum vertex cover, minimum dominating set



Q: "What locally definable problems are locally computable?"

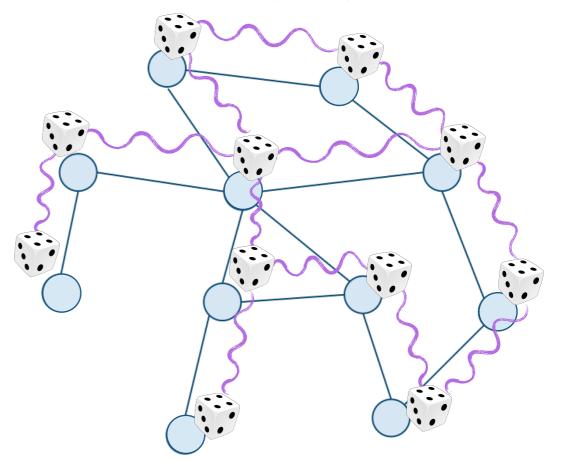
by local constraints

in O(1) rounds or in small number of rounds

"What can be sampled locally?"

- CSP with local constraints on the network:
 - proper *q*-coloring;
 - independent set;
- Sample a uniform random feasible solution:
 - distributed algorithms
 (in the <u>LOCAL</u> model)

network G(V,E):



Q: "What locally definable joint distributions are locally sample-able?"

Markov Random Fields (MRF)

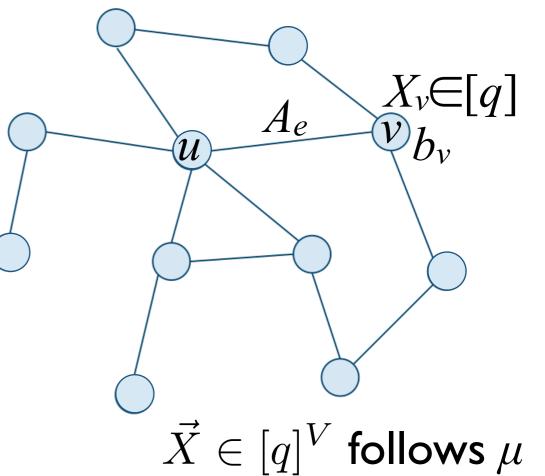
- Each vertex corresponds to a variable with finite domain [q].
- Each edge e=(u,v)∈E imposes a weighted binary constraint:

 $A_e: [q]^2 \to \mathbb{R}_{\geq 0}$

- Each vertex $v \in E$ imposes a weighted unary constraint: $b_v : [q] \to \mathbb{R}_{>0}$
- Gibbs distribution μ : $\forall \sigma \in [q]^V$

$$\mu(\sigma) \propto \prod_{e=(u,v)\in E} A_e(\sigma_u, \sigma_v) \prod_{v\in V} b_v(\sigma_v)$$

network G(V,E):



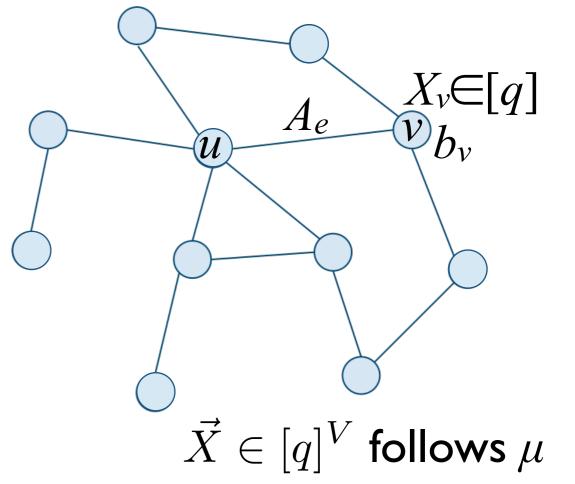
Markov Random Fields (MRF)

• Gibbs distribution μ : $\forall \sigma \in [q]^V$ network G(V,E):

$$\mu(\sigma) \propto \prod_{e=(u,v)\in E} A_e(\sigma_u, \sigma_v) \prod_{v\in V} b_v(\sigma_v)$$

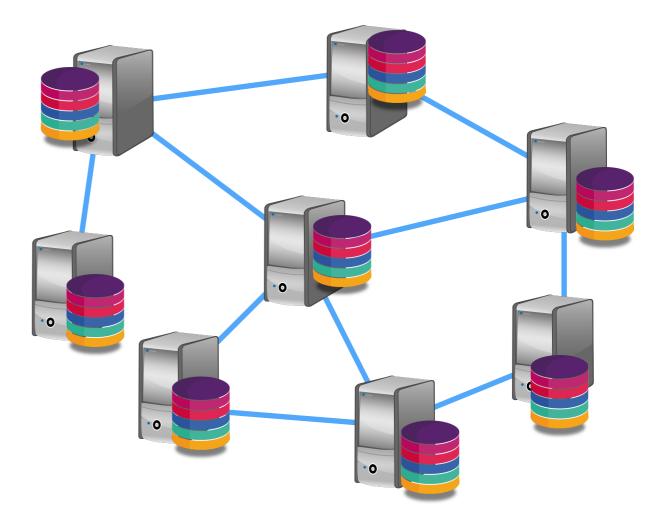
- proper q-coloring: $A_e = \begin{bmatrix} 0 & 1 \\ 0 & 1 \\ 1 & \ddots \\ 1 & 0 \end{bmatrix} \qquad b_v = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$
- independent set: $A_e = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \qquad b_v = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- local conflict colorings: [Fraigniaud, Heinrich, Kosowski FOCS'16]

$$A_e \in \{0,1\}^{q \times q}, b_v \in \{0,1\}^q$$



A Motivation: Distributed Machine Learning

- Data are stored in a distributed system.
- Sampling from a probabilistic graphical model (e.g. the Markov random field) by distributed algorithms.



Glauber Dynamics

starting from an arbitrary $X_0 \in [q]^V$ transition for $X_t \rightarrow X_{t+1}$:

pick a uniform random vertex *v*;

resample X(v) according to the marginal distribution induced by μ at vertex v conditioning on $X_t(N(v))$;

marginal distribution:

$$\Pr[X_v = x \mid X_{N(v)}] = \frac{b_v(x) \prod_{u \in N(v)} A_{(u,v)}(X_u, x)}{\sum_{y \in [q]} b_v(y) \prod_{u \in N(v)} A_{(u,v)}(X_u, y)}$$

stationary distribution: μ

mixing time:
$$\tau_{\min} = \max_{X_0} \min\left\{t \mid d_{\mathsf{TV}}(X_t, \mu) \le \frac{1}{2e}\right\}$$

$$V$$
 $G(V,E)$:

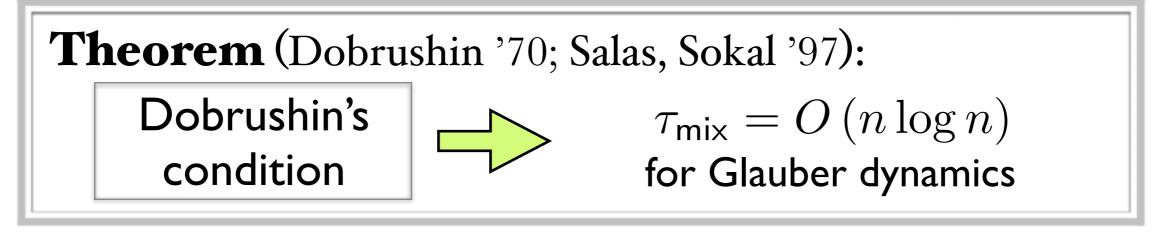
MRF:
$$\forall \sigma \in [q]^V$$
,
 $\mu(\sigma) \propto \prod_{e=(u,v)\in E} A_e(\sigma_u, \sigma_v) \prod_{v\in V} b_v(\sigma_v)$

Mixing of Glauber Dynamics

influence matrix $\{\rho_{v,u}\}_{v,u\in V}$:

 $\rho_{v,u}$: max discrepancy (in total variation distance) of marginal distributions at v caused by any pair σ, τ of boundary conditions that differ only at u

Dobrushin's condition: $\|\rho\|_{\infty} = \max_{v \in V} \sum_{u \in V} \rho_{v,u} \le 1 - \epsilon$ contraction of one-step optimal coupling in the worst case w.r.t. Hamming distance



for *q*-coloring:

Dobrushin's condition



 $q \ge (2 + \varepsilon) \Delta$ $\Delta = \text{max-degree}$

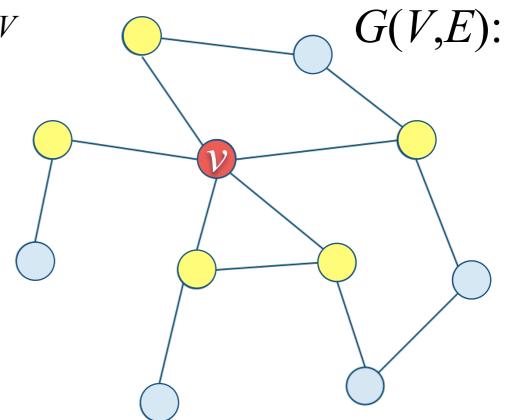
Parallelization

Glauber dynamics:

starting from an arbitrary $X_0 \in [q]^V$ transition for $X_t \rightarrow X_{t+1}$:

pick a uniform random vertex v; resample X(v) according to the

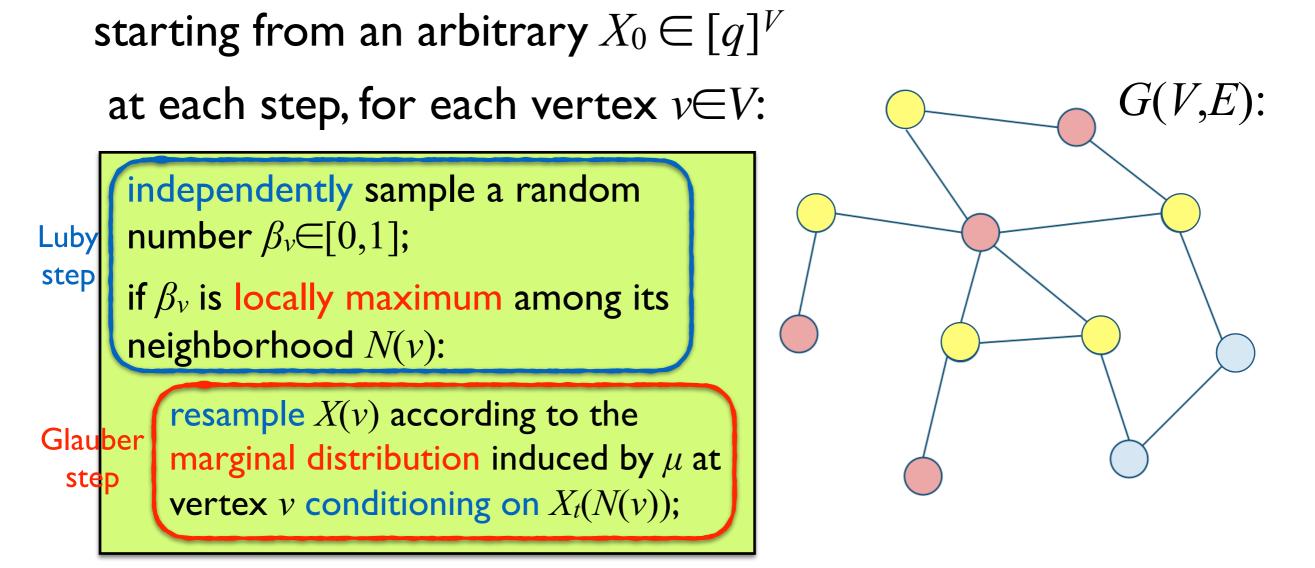
marginal distribution induced by μ at vertex v conditioning on $X_t(N(v))$;



Parallelization:

- Chromatic scheduler [folklore] [Gonzalez *et al.*, AISTAT'11]: Vertices in the same color class are updated in parallel.
- "Hogwild!" [Niu, Recht, Ré, Wright, NIPS'11][De Sa, Olukotun, Ré, ICML'16]: All vertices are updated in parallel, ignoring concurrency issues.

Warm-up: When Luby meets Glauber

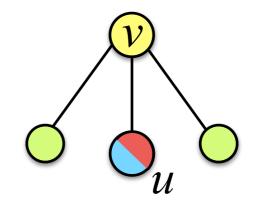


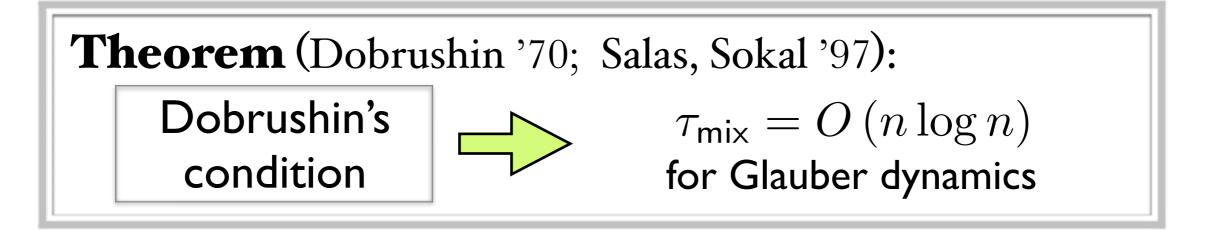
- Luby step: Independently sample a random independent set.
- Glauber step: For independent set vertices, update correctly according to the current marginal distributions.
- Stationary distribution: the Gibbs distribution μ .

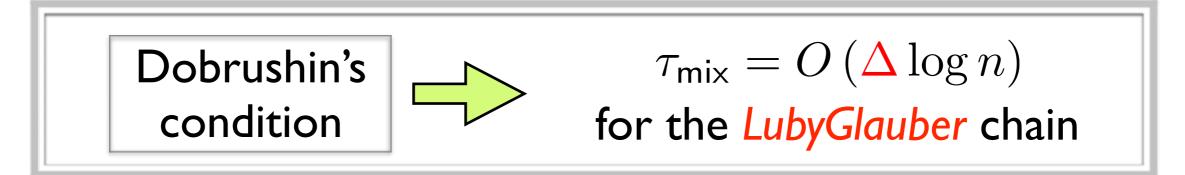
Mixing of LubyGlauber

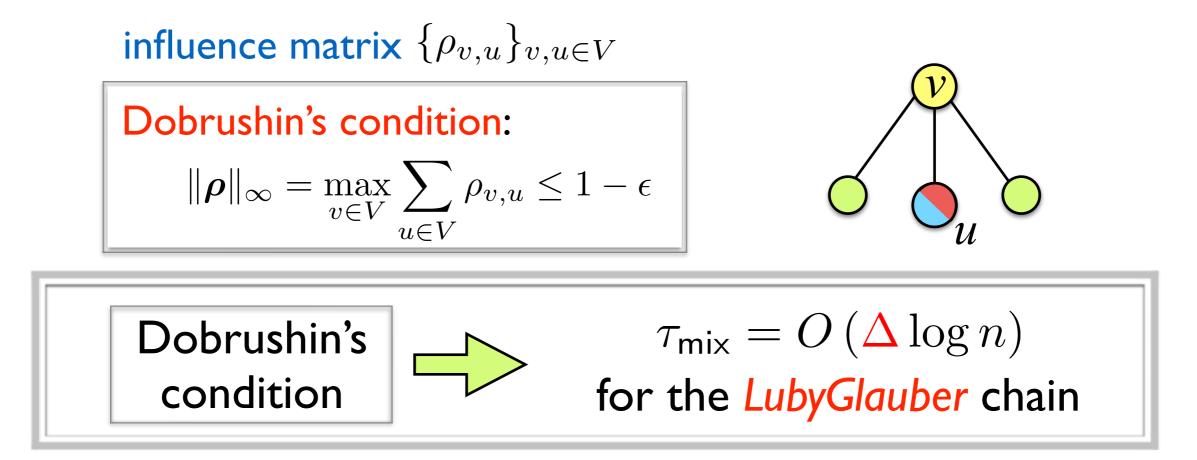
influence matrix $\{\rho_{v,u}\}_{v,u\in V}$

Dobrushin's condition: $\|\rho\|_{\infty} = \max_{v \in V} \sum_{u \in V} \rho_{v,u} \le 1 - \epsilon$









Proof (similar to [Hayes'04] [Dyer-Goldberg-Jerrum'06]):

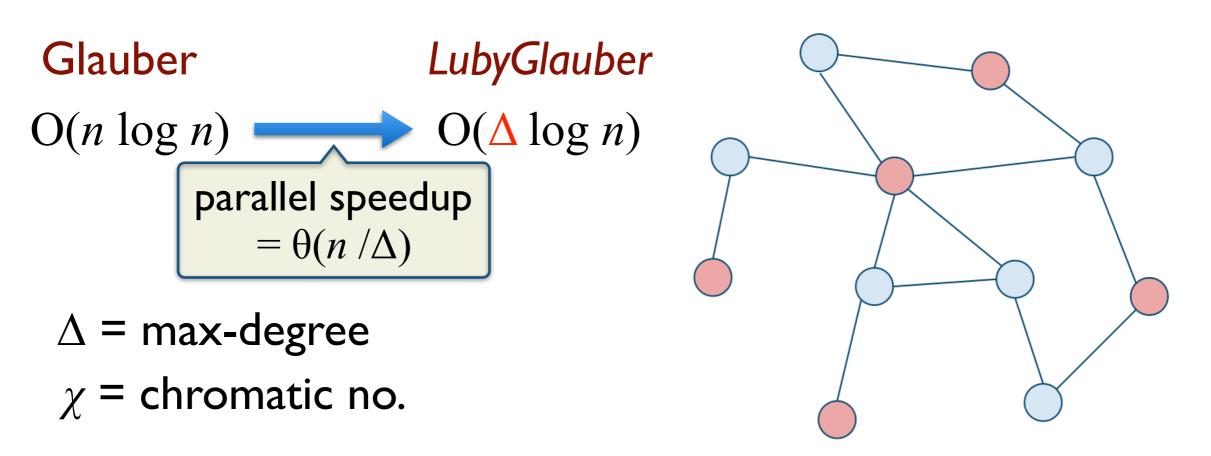
in the one-step optimal coupling (X_t, Y_t) , let $p_v^{(t)} = \Pr[X_t(v) \neq Y_t(v)]$ $\mathbf{p}^{(t+1)} \leq M \mathbf{p}^{(t)}$

where $M = (I - D) + D\rho$ *D* is diagonal and $D_{v,v} = \Pr[v \text{ is picked in Luby step}]$

$$\geq \frac{1}{\deg(v) + 1}$$

 $\Pr[X_t \neq Y_t] \leq \|\mathbf{p}^{(t)}\|_1$ $\leq n \|\mathbf{p}^{(t)}\|_{\infty}$ $\leq n \|M\|_{\infty}^t \|\mathbf{p}^{(0)}\|_{\infty}$ $\leq n \left(1 - \frac{\epsilon}{\Delta + 1}\right)^t$

Crossing the Chromatic # Barrier



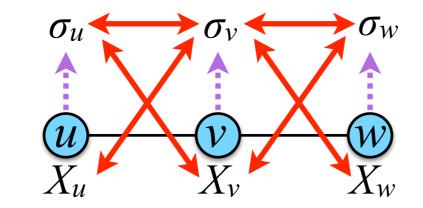
Do not update adjacent vertices simultaneously. It takes $\geq \chi$ steps to update all vertices at least once.

Q: "How to update all variables simultaneously and still converge to the correct distribution?"

The LocalMetropolis Chain

proposals:

current:



starting from an arbitrary $X \in [q]^V$, at each step:

each vertex $v \in V$ independently proposes a random $\sigma_v \in [q]$ with probability $b_v(\sigma_v) / \sum_{i \in [q]} b_v(i)$;

each edge e=(u,v) passes its check independently with prob. $A_e(X_u, \sigma_v)A_e(\sigma_u, X_v)A_e(\sigma_u, \sigma_v) / \max_{i,j \in [q]} (A_e(i,j))^3$; a collective coin flipping made between u and v

each vertex $v \in V$ accepts its proposal and update X_v to σ_v if all incident edges pass their checks;

• [Feng, Sun, Y. '17]: the LocalMetropolis chain is time-reversible w.r.t. the MRF Gibbs distribution μ .

Detailed Balance Equation:

 $\forall X, Y \in [q]^V, \qquad \mu(X)P(X,Y) = \mu(Y)P(Y,X)$

 $\sigma \in [q]^V: \text{ the proposals of all vertices} \\ \mathcal{C} \in \{0,1\}^E: \text{ indicates whether each edge } e \in E \text{ passes its check} \\ \Omega_{X \to Y} \triangleq \{(\sigma, \mathcal{C}) \mid X \to Y \text{ when the random choice is } (\sigma, \mathcal{C})\} \\ \frac{P(X,Y)}{P(Y,X)} = \frac{\sum_{(\sigma,\mathcal{C})\in\Omega_{X \to Y}} \Pr(\sigma)\Pr(\mathcal{C} \mid \sigma, X)}{\sum_{(\sigma,\mathcal{C})\in\Omega_{Y \to X}} \Pr(\sigma)\Pr(\mathcal{C} \mid \sigma, Y)} = \frac{\mu(Y)}{\mu(X)} \end{aligned}$

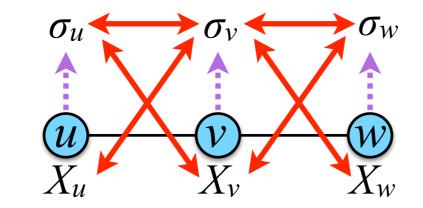
Bijection $\phi_{X,Y}: \Omega_{X \to Y} \to \Omega_{Y \to X}$ is constructed as:

 $(\sigma, \mathcal{C}) \stackrel{\phi_{X,Y}}{\longmapsto} (\sigma', \mathcal{C}') \text{ s.t. } \begin{cases} \mathcal{C} = \mathcal{C}' \\ \text{if } \mathcal{C}_e = 1 \text{ for all } e \text{ incident with } v \text{, then } \sigma'_v = X_v \\ \text{otherwise } \sigma'_v = \sigma_v \end{cases}$

The LocalMetropolis Chain

proposals:

current:



starting from an arbitrary $X \in [q]^V$, at each step:

each vertex $v \in V$ independently proposes a random $\sigma_v \in [q]$ with probability $b_v(\sigma_v) / \sum_{i \in [q]} b_v(i)$;

each edge e=(u,v) passes its check independently with prob. $A_e(X_u, \sigma_v)A_e(\sigma_u, X_v)A_e(\sigma_u, \sigma_v) / \max_{i,j \in [q]} (A_e(i,j))^3$; a collective coin flipping made between u and v

each vertex $v \in V$ accepts its proposal and update X_v to σ_v if all incident edges pass their checks;

• [Feng, Sun, Y. '17]: the LocalMetropolis chain is time-reversible w.r.t. the MRF Gibbs distribution μ .

LocalMetropolis for Hardcore model

the hardcore model on G(V,E) with fugacity λ :

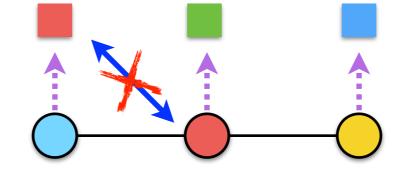
 $\forall \text{ independent set } I \text{ in } G: \quad \mu(I) = \frac{\lambda^{|I|}}{\sum_{I: \text{ IS in } G} \lambda^{|I|}}$

starting from an arbitrary $X \in \{0,1\}^V$, with 1 indicating occupied at each step, each vertex $v \in V$:

proposes a random $\sigma_v \in \{0,1\}$ independently $\sigma_v = \begin{cases} 1 & \text{with probability } \frac{\lambda}{1+\lambda}, \\ 0 & \text{with probability } \frac{1}{1+\lambda}; \end{cases}$ accepts the proposal and update X_v to σ_v unless for some neighbor u of v: $X_u = \sigma_v = 1 \text{ or } \sigma_u = X_v = 1 \text{ or } \sigma_u = \sigma_v = 1;$

• $\lambda < 1/\Delta$: $\tau_{mix} = O(\log n)$, even for unbounded Δ .

LocalMetropolis for q-Coloring



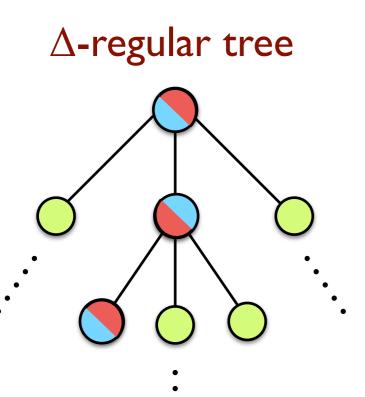
starting from an arbitrary $X \in [q]^V$, at each step, each vertex $v \in V$:

proposes a color $\sigma_v \in [q]$ uniformly and independently at random; accepts the proposal and update X_v to σ_v if for all v's neighbors u: $X_u \neq \sigma_v \land \sigma_u \neq X_v \land \sigma_u \neq \sigma_v$;

Theorem (Feng, Sun, Y. '17):

$$q \ge (2 + \sqrt{2} + \epsilon)\Delta$$
 $\tau_{mix}=O(\log n)$
for LocalMetropolis on q-coloring

The O(log *n*) mixing time bound holds even for *unbounded* Δ and *q*.



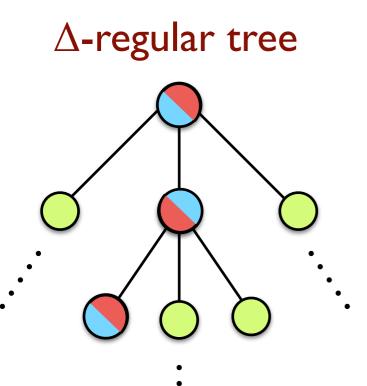
each v:

proposes a uniform random color $\sigma_v \in [q]$; update X_v to σ_v if for all v's neighbors u: $X_u \neq \sigma_v \land \sigma_u \neq X_v \land \sigma_u \neq \sigma_v$;

 $X_{root} = red$, $Y_{root} = blue$ \forall non-root v, $X_v = Y_v \notin \{red, blue\}$

coupling: coupling the proposals (σ^X, σ^Y) so that $(X, Y) \xrightarrow{(\sigma^X, \sigma^Y)} (X', Y')$ vertex v proposes consistently: $\sigma_v^X = \sigma_v^Y$ vertex v proposes bijectively: $\sigma_v^X = \begin{cases} \text{red} & \text{if } \sigma_v^Y = \text{blue} \\ \text{blue} & \text{if } \sigma_v^Y = \text{red} \\ \sigma_v^Y & \text{otherwise} \end{cases}$

- I. the root proposes consistently;
- 2. each child of the root proposes bijectively;
- 3. each vertex of depth ≥ 2 proposes bijectively if its parent proposed different colors in the two chains, and proposes consistently if otherwise;



each v:

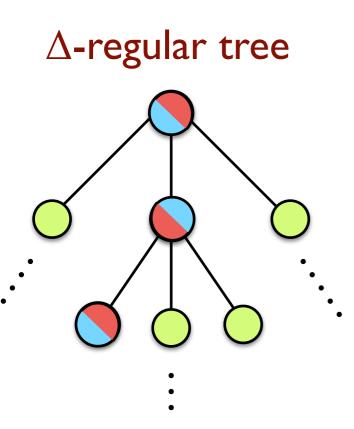
proposes a uniform random color $\sigma_v \in [q]$; update X_v to σ_v if for all v's neighbors u: $X_u \neq \sigma_v \land \sigma_u \neq X_v \land \sigma_u \neq \sigma_v$;

 $X_{root} = red$, $Y_{root} = blue$ \forall non-root v, $X_v = Y_v \notin \{red, blue\}$

Coupling: coupling the proposals (σ^X, σ^Y) so that $(X, Y) \xrightarrow{(\sigma^X, \sigma^Y)} (X', Y')$ root: $\Pr[X'_{\text{root}} \neq Y'_{\text{root}}] \leq 1 - \left(1 - \frac{\Delta}{q}\right) \left(1 - \frac{2}{q}\right)^{\Delta}$ non-root u at level l: $\Pr[X'_u \neq Y'_u] \leq \frac{1}{q} \left(1 - \frac{2}{q}\right)^{\Delta - 1} \left(\frac{2}{q}\right)^{\ell - 1}$

$$\Pr[X'_{\text{root}} \neq Y'_{\text{root}}] + \sum_{\text{non-root } u} \Pr[X'_u \neq Y'_u] \le 1 - \left(1 - \frac{\Delta}{q}\right) \left(1 - \frac{2}{q}\right)^{\Delta} + \frac{\Delta}{q - 2\Delta} \left(1 - \frac{2}{q}\right)^{\Delta - 1}$$

(assume
$$q \ge \alpha \Delta$$
) $\le 1 - e^{-2/\alpha} \left(1 - \frac{1}{\alpha} - \frac{1}{\alpha - 2} \right)$



each v:

proposes a uniform random color $\sigma_v \in [q]$; update X_v to σ_v if for all v's neighbors u: $X_u \neq \sigma_v \land \sigma_u \neq X_v \land \sigma_u \neq \sigma_v$;

 $X_{root} = red$, $Y_{root} = blue$ \forall non-root v, $X_v = Y_v \notin \{red, blue\}$

for general graph:

- I. deal with irregularity by a metric in path coupling;
- 2. deal with cycles by self-avoiding walks;
- 3. deal with red/blue non-root vertices by a monotone argument;

LocalMetropolis for q-Coloring

starting from an arbitrary $X \in [q]^V$, at each step, each vertex $v \in V$:

proposes a color $\sigma_v \in [q]$ uniformly and independently at random; accepts the proposal and update X_v to σ_v if for all v's neighbors u: $X_u \neq \sigma_v \land \sigma_u \neq X_v \land \sigma_u \neq \sigma_v$;

$$q \ge (2 + \sqrt{2} + \epsilon)\Delta$$
 \longrightarrow $\tau_{mix} = O(\log n)$

- The mixing time holds even for unbounded Δ and q.
- $q \ge (1+\epsilon)\Delta$: each vertex is updated at $\Omega(1)$ rate in LocalMetropolis

Lower Bounds

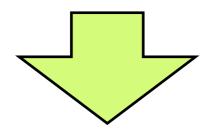
Q: "How local can a distributed sampling algorithm be?"

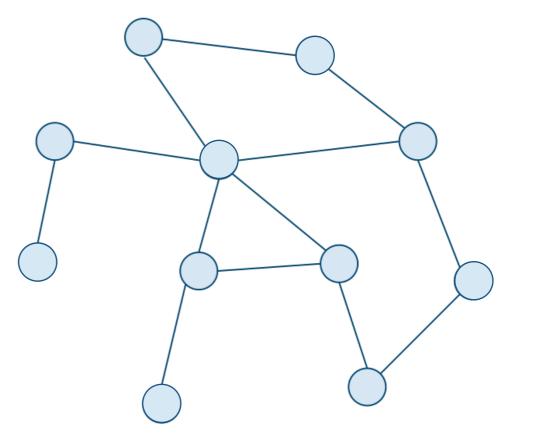
Q: "What *cannot* be sampled locally?"

The LOCAL Model

the **LOCAL** model:

 In t rounds: each node can collect information up to distance t.





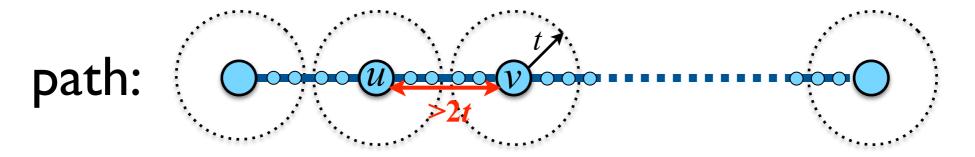
Outputs returned by vertices at distance >2t from each other are mutually independent.

$\Omega(\log n)$ Lower Bound for Sampling

Theorem (Feng, Sun, Y. '17):

For any non-degenerate MRF, any distributed algorithm that samples from its distribution μ within bounded total variation distance requires $\Omega(\log n)$ rounds of communications.

outputs of *t*-round algorithm: mutually independent X_v 's



Gibbs distribution μ : exponential correlation between X_{ν} 's

$$\sigma_u \neq \tau_u: \quad \|\mu_v^{\sigma_u} - \mu_v^{\tau_u}\|_{\mathsf{TV}} \ge \exp(-O(t)) > n^{-1/4}$$

for a $t = O(\log n)$

 $\mathsf{d}_{\mathsf{TV}}(oldsymbol{X},\widetilde{oldsymbol{X}}) > rac{1}{2\mathrm{e}} \;\;$ for any product distribution $\widetilde{oldsymbol{X}}$

$\Omega(\log n)$ Lower Bound for Sampling

Theorem (Feng, Sun, Y. '17):

For any non-degenerate MRF, any distributed algorithm that samples from its distribution μ within bounded total variation distance requires $\Omega(\log n)$ rounds of communications.

- The Ω(log n) lower bound holds for all MRFs with exponential correlation:
 - non-trivial spin systems with O(1) spin states.
- O(log n) is the new criteria of "being local" for distributed sampling algorithms.

An $\Omega(diam)$ Lower Bound

Theorem (Feng, Sun, Y. '17):

For any $\Delta \ge 6$, any distributed algorithm that samples uniform independent set within bounded total variation distance in graphs with max-degree Δ requires $\Omega(diam)$ rounds of communications.

Sampling almost uniform independent set in graphs with max-degree Δ by by poly-time Turing machines:

- [Weitz'06] If $\Delta \leq 5$, there are poly-time algorithms.
- [Sly'10] If ∆≥6, there is no poly-time algorithm unless NP=RP.

The $\Omega(diam)$ lower bound holds for sampling from the hardcore model with *fugacity* $\lambda > \lambda_c(\Delta) = \frac{(\Delta - 1)^{\Delta - 1}}{(\Delta - 2)^{\Delta}}$

Theorem (Feng, Sun, Y. '17):

For any $\Delta \ge 6$, any distributed algorithm that samples uniform independent set within bounded total variation distance in graphs with max-degree Δ requires $\Omega(diam)$ rounds of communications.

G: even cycle *H*: random Δ -regular bipartite gadget $\langle \mathscr{B} \rangle$ of [Sly'10] G^{H} : if $\Delta \geq 6$: sample nearly uniform independent set in G^H max-degree sample nearly uniform max-cut in even cycle G(long-range correlation!)

Theorem (Feng, Sun, Y. '17):

For any $\Delta \ge 6$, any distributed algorithm that samples uniform independent set within bounded total variation distance in graphs with max-degree Δ requires $\Omega(diam)$ rounds of communications.

A strong separation of sampling from other local computation tasks:

- Independent set is trivial to construct locally (because Ø is an independent set).
- The $\Omega(diam)$ lower bound for sampling holds even when every vertex knows the entire graph:
 - The lower bound holds not because of the locality of input information, but because of the locality of randomness.

Summary

- Sampling from locally-defined joint distribution via distributed algorithms:
 - *LubyGlauber*: O(Δlog *n*) rounds under Dobrushin condition;
 - LocalMetropolis: may achieve O(log *n*) rounds;
 - Ω(log n) lower bound for sampling from almost all nontrivial joint distributions;
 - $\Omega(diam)$ lower bound for sampling from joint distributions exhibiting (non-uniqueness) phase transition property.

Weiming Feng, Yuxin Sun, Yitong Yin. *What can be sampled locally?* In **PODC**'17. arxiv: 1702.00142.

Open Problems

- Better analysis of LocalMetropolis.
- Distributed sampling of:
 - matchings;
 - ferromagnetic Ising model on graphs of unbounded degree;
 - anti-ferromagnetic 2-spin systems in the uniqueness regime on graphs of unbounded degree;
- Self-reducible sampling in the LOCAL model?
- Complexity hierarchy for distributed sampling?
- New ideas for distributed sampling: e.g. the *LLL* sampler for hardcore model of Guo-Jerrum-Liu.

Any questions?