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Counting and Sampling

approx. counting
is tractable

(approx., exact) sampling
is tractable

(For self-reducible problems)

[Jerrum-Valiant-Vazirani ’86]:



Computational Phase 
Transition

• [Weitz 2006]:  If ∆≤5, poly-time.

• [Sly 2010]:  If ∆≥6, no poly-time algorithm unless 
NP=RP.

Sampling almost-uniform independent set in 
graphs with maximum degree ∆:

A phase transition occurs when ∆: 5→6.

Local Computation?



Local Computation

• Communications are 
synchronized.

• In each round:  each node can 
exchange unbounded messages with 
all neighbors, perform unbounded 
local computation, and read/write 
to unbounded local memory.

• Complexity:  # of rounds to 
terminate in the worst case.

• In t rounds:  each node can collect information up to distance t.

the LOCAL model [Linial ’87]:

“What can be computed locally?”  [Naor, Stockmeyer ’93]

PLOCAL:  t = polylog(n)



A Motivation: 
Distributed Machine Learning

• Data are stored in a 
distributed system.

• Distributed algorithms for:

• sampling from a joint 
distribution (specified 
by a probabilistic 
graphical model);

• inferring according to a 
probabilistic graphical 
model.



Example: Sample Independent Set

• Each v∈V returns a Yv∈ {0,1},            
such that Y = (Yv)v∈V  ∼ µ 

• Or:  dTV(Y, µ) < 1/poly(n)

µ:  uniform distribution of independent sets in G.

network G(V,E)

Y ∈ {0,1}V indicates an independent set



Inference (Local Counting)

network G(V,E)

µ:  uniform distribution of independent sets in G.

• Each v ∈ S receives σv as input.

• Each v ∈ V returns a marginal 
distribution       such that:µ̂�

v

dTV(µ̂�
v , µ

�
v )  1

poly(n)

:  marginal distribution at v conditioning on σ ∈{0,1}S.µ�
v

0

1 1

0

8y 2 {0, 1} : µ�
v (y) = Pr

Y ⇠µ
[Yv = y | YS = �]

1

Z
= µ(;) =

nY

i=1

Pr
Y ⇠µ

[Yvi = 0 | 8j < i : Yvj = 0]

Z:  # of independent sets



Decay of Correlation

strong spatial mixing (SSM): 

SSM

approx. inference is solvable 
in O(log n) rounds 

in the LOCAL model

G

v r B
σ

:  marginal distribution at v conditioning on σ ∈{0,1}S.µ�
v

∀ boundary condition B∈{0,1}r-sphere(v):

dTV(µ
�
v , µ

�,B
v )  poly(n) · exp(�⌦(r))

(iff ∆≤5 when µ is uniform 
distribution of ind. sets)



Gibbs Distribution

network G(V,E):
• Each vertex corresponds to a 

variable with finite domain [q].

• Each edge e=(u,v)∈E has a matrix 
(binary constraint):

• Each vertex v∈V has a vector 
(unary constraint):

µ(�) /
Y

e=(u,v)2E

Ae(�u,�v)
Y

v2V

bv(�v)

Ae bvu v

(with pairwise interactions)

Ae: [q] × [q] → [0,1]

bv: [q] → [0,1]

• Gibbs distribution µ :   ∀σ∈[q]V



Gibbs Distribution

• Gibbs distribution µ :   ∀σ∈[q]V

µ(�) /
Y

e=(u,v)2E

Ae(�u,�v)
Y

v2V

bv(�v)

• independent set:

bv =


1
1

�
Ae =


1 1
1 0

�

• coloring:

network G(V,E):

Ae bvu v

Ae: [q] × [q] → [0,1]
bv: [q] → [0,1]

(with pairwise interactions)

Ae =

2

6664

0
0

. . .
0

3

77751
1

bv =

2

64
1
...
1

3

75



Gibbs Distribution

• Gibbs distribution µ :   ∀σ∈[q]V
network G(V,E):

S

µ(�) /
Y

(f,S)2F

f(�S)

is a local constraints (factors):

f : [q]S ! R�0

S ⊆ V with diamG(S) = O(1)

(f, S) 2 Feach



Locality of Counting & Sampling

SSM

Correlation
Decay:

Inference: Sampling:

local approx.
sampling

local approx.
inference

local approx.
inference

local exact
sampling

with additive error

with multiplicative error

For Gibbs distributions (defined by local factors):

O(log2 n) factor

easy

distributed
Las Vegas sampler



Locality of Sampling
Inference: Sampling:

local approx.
sampling

local approx.
inferenceSSM

Correlation
Decay:

sequential O(log n)-local procedure:

µ̂�
veach v can compute a

within O(log n)-ball

s.t.

• scan vertices in V in an arbitrary order v1, v2, …, vn

• for i=1,2, …, n:   sample       according to Yvi µ̂
Yv1 ,...,Yvi�1
vi

return a random Y = (Yv)v∈V

whose distribution µ̂ ⇡ µ

dTV (µ̂, µ)  1
poly(n)dTV (µ̂�

v , µ
�
v )  1

poly(n)



Network Decomposition

• scan vertices in V in an arbitrary order v1, v2, …, vn

• for i=1,2, …, n:   sample       according to Yvi µ̂
Yv1 ,...,Yvi�1
vi

Given a (C,D)r- ND:

can be simulated in O(CDr) rounds in LOCAL model

sequential r-local procedure: r = O(log n)

(C,D) -network-decomposition of G:

• classifies vertices into clusters;

• assign each cluster a color in [C];
• each cluster has diameter ≤D;

• clusters are properly colored.

(C,D)r-ND:   (C,D)-ND of Gr 

r = O(log n)

rD
r

C colors



Network Decomposition

r-local SLOCAL algorithm:
∀ ordering π=(v1, v2, …, vn),

returns random vector Y(π)

O(rlog2n)-round LOCAL alg.:
returns w.h.p. the Y(π) 
for some ordering π

[Linial, Saks, 1993] — [Ghaffari, Kuhn, Maus, 2017]:

ND

(O(log n), O(log n))r-ND can be 
constructed in O(r log2 n) rounds w.h.p.

(C,D) -network-decomposition of G:

• classifies vertices into clusters;

• assign each cluster a color in [C];
• each cluster has diameter ≤D;

• clusters are properly colored.

(C,D)r-ND:   (C,D)-ND of Gr 
O(log2 n)

O(log n) colors

O(log n)



Locality of Sampling

SSM

Correlation
Decay:

Inference: Sampling:

local approx.
sampling

local approx.
inference

local approx.
inference

local exact
sampling

with multiplicative error

O(log n)-round

with additive error

O(log3 n)-round

distributed
Las Vegas sampler



Rejection sampling:

Target distribution D*:   X1, …, Xn conditioned on accepted

• X1, …, Xn are drawn independently;

• each             occurs independently with prob.                         ;

• the sample is accepted if none of             occurs.

1� qA
�
Xvbl(A)

�
A 2 A

A 2 A

An LLL-like Framework
independent random variables:  X1, …, Xn with domain Ω 

each is associated with A 2 A
vbl(A) ✓ [n]variable set

(

qA : ⌦vbl(A) ! [0, 1]function

(with conditionally mutually independent filters)

{   }
variable-framework Lovász local lemma

A :  a set of bad events  

Partial rejection sampling [Guo-Jerrum-Liu’17]: resample not all variables

Resample variables local to the errors? (Moser-Tardos)



Local Rejection Sampling
• draw independent samples of X = (X1, …, Xn);

• each            occurs (violated) ind. with Pr[A]=1-qA(Xvbl(A)); 

• while there is a violated bad event           :

• resample all variables in vbl(A) for violated A; 

• for violated A:  violate A with Pr[A] = 1-qA(Xvbl(A));

• for non-violated A that shares variables with violated event:  
violate A with Pr[A] = 

A 2 A
A 2 A

where qA* is a worst-case lower bound for qA( ): 
8Xvbl(A) : qA

�
Xvbl(A)

�
� q⇤A

soft filters: 8A 2 A, q⇤A > 0 (X1, …, Xn) ~ D* 

upon termination

(target 
distribution)

Only the variables local to the

violated events are resampled. (work even for dynamic filters)

Xold  current X

1� q⇤A · qA
�
Xvbl(A)

�
/qA

⇣
Xold

vbl(A)

⌘

By a resampling table argument.



Local Ising Sampler

• each vertex v ∈ V ind. samples a spin state σv∈{0,1} ∝ b;

• each edge e=(u,v) ∈ E fails ind. with prob. 1-A(σu,σv); 

• while there is a failed edge:   σold ← current σ

• resample σv for all vertices v involved in failed edges; 

• each failed e=(u,v) is revived ind. with prob. A(σu,σv);

• each non-failed e=(u,v) that is incident to a failed edge, 

fails ind. with prob. 1 - β·A(σu,σv)/A(σuold,σvold);

A =


� 1
1 �

�
A =


1 �
� 1

�
b =


�
1

�0 < � < 1

� > 0
ferro: anti-ferro:

external 
field

• local & parallel
• dynamic graph
• exact sampler
• certifiable termination

Pros: Cons:
• convergence is hard to 

analyze
• regime is not tight

• soft constraints
� > 1�⇥( 1

� )



Locality of Sampling

SSM

Correlation
Decay:

Inference: Sampling:

local approx.
sampling

local approx.
inference

local approx.
inference

local exact
sampling

distributed
Las Vegas sampler

with additive error

with multiplicative error

For Gibbs distributions (distributions defined by local factors):



Jerrum-Valiant-Vazirani Sampler

∃ an efficient algorithm that samples from µ̂

[Jerrum-Valiant-Vazirani ’86]

multiplicative error: e�1/n2

 µ̂(�)

µ(�)
 e1/n

2

µ(�) =
nY

i=1

µ�1,...,�i�1
vi (�i) =

nY

i=1

Z(�1, . . . ,�i)

Z(�1, . . . ,�i�1)

µ̂�1,...,�i�1
vi (�i) =

Ẑ(�1, . . . ,�i)

Ẑ(�1, . . . ,�i�1)
⇡ e±1/n3 · µ�1,...,�i�1

vi (�i)let

where by approx. countinge�1/2n3  Ẑ(··· )
Z(··· )  e1/2n

3

Self-reduction:

and evaluates µ̂(�) given any � 2 {0, 1}V

8� 2 {0, 1}V :



Jerrum-Valiant-Vazirani Sampler

∃ an efficient algorithm that samples from µ̂

[Jerrum-Valiant-Vazirani ’86]

multiplicative error: e�1/n2

 µ̂(�)

µ(�)
 e1/n

2

and evaluates µ̂(�) given any � 2 {0, 1}V

8� 2 {0, 1}V :

Sample a random             ; 
pick Y0 = ∅ ; 
accept Y with prob.:
fail if otherwise;

Y ⇠ µ̂

q =
µ̂(Y 0)

µ̂(Y )
· e�

3
n2 2

h
e�5/n2

, 1
i

8� 2 {0, 1}V :

/
(
1 � is ind. set

0 otherwise
Pr[Y = � ^ accept] = µ̂(�) · µ̂(;)

µ̂(�)
· e�

3
n2



Boosting Local Inference

SSM
local approx.

inference

µ̂�
veach v computes a

within r-ball

(

• scan vertices in V in an arbitrary order v1, v2, …, vn

• for i=1,2, …, n:   sample       according to Yvi µ̂
Yv1 ,...,Yvi�1
vi

boosted sequential r-local sampler: r = O(log n)

multiplicative error: e�1/n2

 µ̂(�)

µ(�)
 e1/n

2

8� 2 {0, 1}V :

both are achievable with r = O(log n)SSM
local self-reduction

additive error:
dTV (µ̂�

v , µ
�
v )  1

poly(n)

multiplicative error:
µ̂�
v (0)

µ�
v (0)

,
µ̂�
v (1)

µ�
v (1)

2
h
e�1/poly(n), e1/poly(n)

i



pass 1:   sample Y ∈ {0,1}V by boosted sequential r-local sampler    ;

SLOCAL JVV

pass 1’:   construct a sequence of ind. sets ∅=Y0, Y1, …, Yn =Y;

µ̂

Scan vertices in V in an arbitrary order v1, v2, …, vn :

s.t. ∀ 0 ≤ i ≤ n: • Yi agrees with Y over v1, …, vi 

• Yi and Yi-1 differ only at vi 

each vi:  bad event       occurs independently with

where

r = O(log n)

O(log n)-local 
to compute

e�1/n2

 µ̂(�)

µ(�)
 e1/n

28� 2 [q]V :

2 [e�5/n2

, 1]qvi =
µ̂(Y i�1)

µ̂(Y i)
· e�3/n2

Y=(Yv)v∈V is accepted if no bad event occurs

Pr[Avi ] = 1� qviAvi



= µ̂(�) · µ̂(;)
µ̂(�)

· e� 3
n /

(
1 � is ind. set

0 otherwise

8� 2 {0, 1}V :

pass 1:   sample Y ∈ {0,1}V by boosted sequential r-local sampler    ;

pass 1’:   construct a sequence of ind. sets ∅=Y0, Y1, …, Yn =Y;

µ̂

Scan vertices in V in an arbitrary order v1, v2, …, vn :

s.t. ∀ 0 ≤ i ≤ n: • Yi agrees with Y over v1, …, vi 

• Yi and Yi-1 differ only at vi 

each vi:  bad event       occurs independently with

where

r = O(log n)e�1/n2

 µ̂(�)

µ(�)
 e1/n

28� 2 [q]V :

2 [e�5/n2

, 1]qvi =
µ̂(Y i�1)

µ̂(Y i)
· e�3/n2

Pr[Avi ] = 1� qviAvi

Pr[Y = � ^ accept] = µ̂(�)
nY

i=1

qvi = µ̂(�)
nY

i=1

✓
µ̂(Y i�1)

µ̂(Y i)
· e�3/n2

◆�����
Y n=Y =�



(C,D)r -network-decomposition of G:

• classifies vertices into clusters;

• assign each cluster a color in [C];

• each cluster has diameter ≤D in Gr;

• clusters with same color are >r 
distance away from each other.

Given a (C,D)r- ND:
• each vertex v has an ind. local random source Xv;

• each v assigned with color c in ND can compute in O(rcD) rounds:

a random indicator Yv∈{0,1}
the local function qv to determine bad event Av 

even with access only to the part of ND with colors ≤ c

Y conditioned on no Av’s occurring follows Gibbs distribution  µ.

rD
r

C colors



An LLL-like Framework
Each v holds: 

Rejection sampling:

a bad event Av

• Each v draws an ind. sample of Xv and maps Xvbl(v) to Yv; 

• each Av occurs independently with prob.  1- qv(Xvbl(v));

• the sample Y = (Yv)v∈V is accepted if no Av occurs.

an ind. random variable Xv with domain Ω 

vbl(v) ✓ [n]

qv : ⌦vbl(v) ! [0, 1]
each Av is associated with 

variable set
(

function

Target distribution µ*:   Y conditioned on accepted

Each v maps random sources Xvbl(v) to final output Yv 
by a local function.



Local Rejection Sampling
• Each v draws ind. sample of Xv and computes Yv from Xvbl(v).

• Each v violates Av ind. with Pr[Av]=1-qv(Xvbl(v)). 

• In each iteration:  for each v with Av violated:

• resample all variables in vbl(v) and update Yv;

• resample Av with Pr[Av] = 1-qv(Xvbl(v));

• for non-violated Au that shares variables with Av:   
resample Au with Pr[Au] =                                           . 1� e�5/n2

· qu
�
Xvbl(u)

�
/qu

⇣
Xold

vbl(u)

⌘

Given a (C,D)r- ND:

• each iteration costs O(rCD) rounds in LOCAL model;

• terminates in O(1) iterations w.h.p.;

• upon termination: Y ~ µ.

r = O(log n) determined by SSM decay rate



(C,D)r -network-decomposition of G:

• classifies vertices into clusters;

• assign each cluster a color in [C];

• each cluster has diameter ≤D in Gr;

• clusters with same color are >r 
distance away from each other.

(C, D)r- ND constructed in O(rCD) 
rounds by a Las Vegas process 

even with access only to the part of ND with colors ≤ c

[Linial, Saks, 1993]

with fixed D=O(log n) and random C=O(log n) w.h.p.

• each vertex v has an ind. local random source Xv;

• each v assigned with color c in ND can compute in O(rcD) rounds:

a random indicator Yv∈{0,1}
the local function qv to determine bad event Av 

O(log2 n)

O(log n) colors

O(log n)



Local Rejection Sampling
• Each v draws ind. sample of Xv and computes Yv from Xvbl(v).

• Each v violates Av ind. with Pr[Av]=1-qv(Xvbl(v)). 

• In each iteration:  for each v with Av violated:

• resample all variables in vbl(v) and update Yv;

• resample Av with Pr[Av] = 1-qv(Xvbl(v));

• for non-violated Au that shares variables with Av:   
resample Au with Pr[Au] =                                           . 1� e�5/n2

· qu
�
Xvbl(u)

�
/qu

⇣
Xold

vbl(u)

⌘

(O(log n),O(log n))O(log n)- ND is constructed:   one color c at a time

• each iteration costs O(c log2 n) rounds in LOCAL model;

• terminates in O(1) iterations w.h.p.;

• upon termination: Y ~ µ.

work even for dynamically incoming bad events

O(log3 n) rounds w.h.p.



Locality of Sampling

SSM

Correlation
Decay:

Inference: Sampling:

local approx.
sampling

local approx.
inference

local approx.
inference

local exact
sampling

distributed
Las Vegas sampler

with additive error

with multiplicative error

For Gibbs distributions (distributions defined by local factors):

O(log2 n) factor

easy

O(log n)-round O(log3 n)-round

exponential
decay



Algorithmic Implications

•                  -round distributed algorithm for sampling 
matchings in graphs with max-degree Δ;

•              -round distributed algorithms for sampling:

• hardcore model (weighted independent set) in the 
uniqueness regime;

• antiferromagnetic Ising model in the uniqueness regimes;

• antiferromagnetic 2-spin systems in the uniqueness regimes;

• weighted hypergraph matchings in the uniqueness regimes;

• uniform q-coloring/list-coloring when q>1.763…Δ in 
triangle-free graphs with max-degree Δ; 

• … …

O(
p
� log3 n)

O(log3 n)

(due to the state-of-the-arts of strong spatial mixing)



When ∆≤5:  

• SSM holds;

• ∃ O(log3 n)-round distributed Las Vegas sampler.

Local Exact Sampler
Uniform sampling ind. set in graphs with max-degree ∆:

[Feng, Sun, Y., PODC’17]: 
If ∆≥6, there is an infinite sequence of graphs G with diam(G) = nΩ(1) 
such that even approx. sampling ind. set requires Ω(diam) rounds.



Hold for Local Computation!



Message-Passing Algorithms

• Communications are 
synchronized.

• Each node v has an independent 
random source Xv.

• In each round, each node can:

exchange messages with neighbors

perform local computation

read/write to local memory

• msg/memory size =O(log n)      
or even O(1) bits.

(LOCAL model with bounded memory/communication)



Distributed Gibbs Samplers 
that may work in practice 

• Parallelization of Glauber dynamics:

• “Hogwild!”              —— biased

• chromatic scheduler —— Ω(∆log n) rounds

• (lazy) Local Metropolis.  —— approximate

• Local Rejection Sampling. —— exact, dynamic

O(log n) 
rounds{



Local Rejection Sampling

• each vertex v ∈ V ind. samples a spin state σv∈[q] ∝ bv;

• each edge e=(u,v) ∈ E fails ind. with prob. 1-Ae(σu,σv); 

• while there is a failed edge:   σold ← current σ

• resample σv for all vertices v involved in failed edges; 

• each failed e=(u,v) is revived ind. with prob. Ae(σu,σv);

• each non-failed e=(u,v) that is incident to a failed edge, 

fails ind. with prob. 1 - β·Ae(σu,σv)/Ae(σuold,σvold);

• local & parallel
• dynamic graph
• exact sampler
• certifiable termination

Pros: Cons:
• convergence is hard to 

analyze
• regime is not tight

• soft constraints

Ae : [q]⇥ [q] ! [�, 1] bv : [q] ! R�0



Local Metropolis

starting from an arbitrary X ∈ [q]V,  at each step:

u v w
Xu Xv Xwcurrent:

proposals: σu σv σw

• each vertex v ∈ V ind. proposes a spin state σv∈[q] ∝ bv;

• each edge fails ind. with prob. 1-Ae(Xu,σv)Ae(σu,Xv)Ae(σu,σv);

• each vertex v ∈ V accepts its proposal and update Xv to σv 
if none of its edge fails.

[Feng, Sun, Y. ’17] [Feng, Y. ’18]

Ae: [q] × [q] → [0,1] bv: [q] → [0,1]



Thank you!
Feng, Liu, Y. Local rejection sampling with soft filters. arxiv: 1807.06481. 

Feng, Hayes, Y. Distributed Symmetry Breaking in Sampling (Optimal 
Distributed Randomly Coloring with Fewer Colors).  arxiv: 1802.06953. 

Feng, Y. On local distributed sampling and counting.   
In PODC’18. arxiv: 1802.06686. 

Feng, Sun, Y. What can be sampled locally? In PODC’17. arxiv: 1702.00142.


