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Counting and Sampling

approx. counting
is tractable

(approx., exact) sampling
is tractable

(For self-reducible problems)

[Jerrum-Valiant-Vazirani ’86]:



Computational Phase 
Transition

• [Weitz, STOC’06]:  If ∆≤5, poly-time.

• [Sly, best paper in FOCS’10]:  If ∆≥6, no poly-time 
algorithm unless NP=RP.

Sampling almost-uniform independent set in 
graphs with maximum degree ∆:

A phase transition occurs when ∆: 5→6.

Local Computation?



Local Computation

• Communications are 
synchronized.

• In each round, each node can: 
exchange unbounded messages 
with all neighbors
perform unbounded local 
computation
read/write to unbounded local 
memory.

• In t rounds:  each node can collect information up to distance t.

the LOCAL model [Linial ’87]:

“What can be computed locally?”  [Naor, Stockmeyer ’93]



Example: Sample Independent Set

• Each v∈V returns a Yv∈ {0,1},            
such that Y = (Yv)v∈V  ∼ µ 

• Or:  dTV(Y, µ) < 1/poly(n)

µ:  uniform distribution of independent sets in G.

network G(V,E)

Y ∈ {0,1}V indicates an independent set



Inference (Local Counting)

network G(V,E)

µ:  uniform distribution of independent sets in G.

• Each v ∈ S receives σv as input.

• Each v ∈ V returns a marginal 
distribution       such that:µ̂�

v

dTV(µ̂�
v , µ

�
v )  1

poly(n)

:  marginal distribution at v conditioning on σ ∈{0,1}S.µ�
v

0

1 1

0

8y 2 {0, 1} : µ�
v (y) = Pr

Y ⇠µ
[Yv = y | YS = �]

1

Z
= µ(;) =

nY

i=1

Pr
Y ⇠µ

[Yvi = 0 | 8j < i : Yvj = 0]

Z:  # of independent sets



Gibbs Distribution

network G(V,E):
• Each vertex corresponds to a 

variable with finite domain [q].

• Each edge e=(u,v)∈E has a matrix 
(binary constraint):

• Each vertex v∈V has a vector 
(unary constraint):

µ(�) /
Y

e=(u,v)2E

Ae(�u,�v)
Y

v2V

bv(�v)

Ae bvu v

(with pairwise interactions)

Ae: [q] × [q] → [0,1]

bv: [q] → [0,1]

• Gibbs distribution µ :   ∀σ∈[q]V



Gibbs Distribution

• Gibbs distribution µ :   ∀σ∈[q]V

µ(�) /
Y

e=(u,v)2E

Ae(�u,�v)
Y

v2V

bv(�v)

• independent set:

bv =


1
1

�
Ae =


1 1
1 0

�

• local conflict colorings:
[Fraigniaud, Heinrich, Kosowski, FOCS’16]

network G(V,E):

Ae bvu v

Ae: [q] × [q] → {0,1}
bv: [q] → {0,1}

Ae: [q] × [q] → [0,1]
bv: [q] → [0,1]

(with pairwise interactions)



Gibbs Distribution

• Gibbs distribution µ :   ∀σ∈[q]V
network G(V,E):

S

µ(�) /
Y

(f,S)2F

f(�S)

is a local constraints (factors):

f : [q]S ! R�0

S ⊆ V with diamG(S) = O(1)

(f, S) 2 Feach



A Motivation: 
Distributed Machine Learning

• Data are stored in a 
distributed system.

• Distributed algorithms for:

• sampling from a joint 
distribution (specified 
by a probabilistic 
graphical model);

• inferring according to a 
probabilistic graphical 
model.



Computational Phase 
Transition

• [Weitz, STOC’06]: If ∆≤5, poly-time.

• [Sly, FOCS’10]: If ∆≥6, no poly-time algorithm 
unless NP=RP.

Sampling almost-uniform independent set in 
graphs with maximum degree ∆:

A phase transition occurs when ∆: 5→6.



Decay of Correlation

strong spatial mixing (SSM): 

SSM

approx. inference is solvable 
in O(log n) rounds 

in the LOCAL model

G

v r B
σ

:  marginal distribution at v conditioning on σ ∈{0,1}S.µ�
v

∀ boundary condition B∈{0,1}r-sphere(v):

dTV(µ
�
v , µ

�,B
v )  poly(n) · exp(�⌦(r))

(iff ∆≤5 when µ is uniform 
distribution of ind. sets)



Locality of Counting & Sampling

SSM

Correlation
Decay:

Inference: Sampling:

local approx.
sampling

local approx.
inference

local approx.
inference

local exact
sampling

with additive error

with multiplicative error

For Gibbs distributions (defined by local factors):

O(log2 n) factor

easy



Locality of Sampling
Inference: Sampling:

local approx.
sampling

local approx.
inferenceSSM

Correlation
Decay:

sequential O(log n)-local procedure:

µ̂�
veach v can compute a

within O(log n)-ball

s.t.

• scan vertices in V in an arbitrary order v1, v2, …, vn

• for i=1,2, …, n:   sample       according to Yvi µ̂
Yv1 ,...,Yvi�1
vi

return a random Y = (Yv)v∈V

whose distribution µ̂ ⇡ µ

dTV (µ̂, µ)  1
poly(n)dTV (µ̂�

v , µ
�
v )  1

poly(n)



Network Decomposition

• scan vertices in V in an arbitrary order v1, v2, …, vn

• for i=1,2, …, n:   sample       according to Yvi µ̂
Yv1 ,...,Yvi�1
vi

Given a (C,D)r- ND:

can be simulated in O(CDr) rounds in LOCAL model

sequential r-local procedure: r = O(log n)

(C,D) -network-decomposition of G:

• classifies vertices into clusters;

• assign each cluster a color in [C];
• each cluster has diameter ≤D;

• clusters are properly colored.

(C,D)r-ND:   (C,D)-ND of Gr 

r = O(log n)



Network Decomposition

r-local SLOCAL algorithm:
∀ ordering π=(v1, v2, …, vn),

returns random vector Y(π)

O(rlog2n)-round LOCAL alg.:
returns w.h.p. the Y(π) 
for some ordering π

[Linial, Saks, 1993] — [Ghaffari, Kuhn, Maus, 2017]:

ND

(O(log n), O(log n))r-ND can be 
constructed in O(r log2 n) rounds w.h.p.

(C,D) -network-decomposition of G:

• classifies vertices into clusters;

• assign each cluster a color in [C];
• each cluster has diameter ≤D;

• clusters are properly colored.

(C,D)r-ND:   (C,D)-ND of Gr 



Locality of Sampling

SSM

Correlation
Decay:

Inference: Sampling:

local approx.
sampling

local approx.
inference

local approx.
inference

local exact
sampling

with multiplicative error

O(log n)-round

with additive error

O(log3 n)-round



Local Exact Sampler

In LOCAL model:

• Each v∈V returns within fixed t(n) rounds:

• local output Yv∈{0,1};

• local failure Fv∈{0,1}.

• Succeeds w.h.p.:  ∑v∈V E[Fv] = O(1/n). 

• Correctness:  conditioning on success, Y ~ µ.



Jerrum-Valiant-Vazirani Sampler

∃ an efficient algorithm that samples from µ̂

[Jerrum-Valiant-Vazirani ’86]

multiplicative error: e�1/n2

 µ̂(�)

µ(�)
 e1/n

2

µ(�) =
nY

i=1

µ�1,...,�i�1
vi (�i) =

nY

i=1

Z(�1, . . . ,�i)

Z(�1, . . . ,�i�1)

µ̂�1,...,�i�1
vi (�i) =

Ẑ(�1, . . . ,�i)

Ẑ(�1, . . . ,�i�1)
⇡ e±1/n3 · µ�1,...,�i�1

vi (�i)let

where by approx. countinge�1/2n3  Ẑ(··· )
Z(··· )  e1/2n

3

Self-reduction:

and evaluates µ̂(�) given any � 2 {0, 1}V

8� 2 {0, 1}V :



Jerrum-Valiant-Vazirani Sampler

∃ an efficient algorithm that samples from µ̂

[Jerrum-Valiant-Vazirani ’86]

multiplicative error: e�1/n2

 µ̂(�)

µ(�)
 e1/n

2

and evaluates µ̂(�) given any � 2 {0, 1}V

8� 2 {0, 1}V :

Sample a random             ; 
pick Y0 = ∅ ; 
accept Y with prob.:
fail if otherwise;

Y ⇠ µ̂

q =
µ̂(Y 0)

µ̂(Y )
· e�

3
n2 2

h
e�5/n2

, 1
i

8� 2 {0, 1}V :

/
(
1 � is ind. set

0 otherwise
Pr[Y = � ^ accept] = µ̂(�) · µ̂(;)

µ̂(�)
· e�

3
n2



Boosting Local Inference

SSM
local approx.

inference

µ̂�
veach v computes a

within r-ball

(

• scan vertices in V in an arbitrary order v1, v2, …, vn

• for i=1,2, …, n:   sample       according to Yvi µ̂
Yv1 ,...,Yvi�1
vi

boosted sequential r-local sampler: r = O(log n)

multiplicative error: e�1/n2

 µ̂(�)

µ(�)
 e1/n

2

8� 2 {0, 1}V :

both are achievable with r = O(log n)SSM
local self-reduction

additive error:
dTV (µ̂�

v , µ
�
v )  1

poly(n)

multiplicative error:
µ̂�
v (0)

µ�
v (0)

,
µ̂�
v (1)

µ�
v (1)

2
h
e�1/poly(n), e1/poly(n)

i



pass 1:   sample Y ∈ {0,1}V by boosted sequential r-local sampler    ;

SLOCAL JVV

pass 1’:   construct a sequence of ind. sets ∅=Y0, Y1, …, Yn =Y;

µ̂

Scan vertices in V in an arbitrary order v1, v2, …, vn :

s.t. ∀ 0 ≤ i ≤ n: • Yi agrees with Y over v1, …, vi 

• Yi and Yi-1 differ only at vi 

vi samples                   independently with

where

r = O(log n)

O(log n)-local 
to compute

e�1/n2

 µ̂(�)

µ(�)
 e1/n

28� 2 [q]V :

2 [e�5/n2

, 1]

Fvi 2 {0, 1} Pr[Fvi = 0] = qvi

qvi =
µ̂(Y i�1)

µ̂(Y i)
· e�3/n2

Each v∈V returns:

• Yv ∈{0,1} to indicate the ind. set;

• Fv ∈{0,1} indicate failure at v.



Pr[Y = � ^ 8i : Fvi = 0] = µ̂(�)
nY

i=1

qvi = µ̂(�)
nY

i=1

✓
µ̂(Y i�1)

µ̂(Y i)
· e�3/n2

◆�����
Y n=Y =�

= µ̂(�) · µ̂(;)
µ̂(�)

· e� 3
n /

(
1 � is ind. set

0 otherwise

8� 2 {0, 1}V :

pass 1:   sample Y ∈ {0,1}V by boosted sequential r-local sampler    ;

pass 1’:   construct a sequence of ind. sets ∅=Y0, Y1, …, Yn =Y;

µ̂

Scan vertices in V in an arbitrary order v1, v2, …, vn :

s.t. ∀ 0 ≤ i ≤ n: • Yi agrees with Y over v1, …, vi 

• Yi and Yi-1 differ only at vi 

vi samples                   independently with

where

r = O(log n)e�1/n2

 µ̂(�)

µ(�)
 e1/n

28� 2 [q]V :

2 [e�5/n2

, 1]

Fvi 2 {0, 1} Pr[Fvi = 0] = qvi

qvi =
µ̂(Y i�1)

µ̂(Y i)
· e�3/n2



Network Decomposition

r-local SLOCAL algorithm:
∀ ordering π=(v1, v2, …, vn),

returns random vector Y(π)

O(rlog2n)-round LOCAL alg.:
returns w.h.p. the Y(π) 
for some ordering π

[Linial, Saks, 1993] — [Ghaffari, Kuhn, Maus, 2017]:

ND

(O(log n), O(log n))r-ND can be 
constructed in O(r log2 n) rounds w.h.p.

(C,D) -network-decomposition of G:

• classifies vertices into clusters;

• assign each cluster a color in [C];
• each cluster has diameter ≤D;

• clusters are properly colored.

(C,D)r-ND:   (C,D)-ND of Gr 



• Each v∈V returns in O(log3 n) rounds:

• local output Yv∈{0,1};

• local failure Fv∈{0,1}.

• Succeeds w.h.p.:  ∑v∈V E[Fv] = O(1/n). 

• Correctness:  conditioning on success, Y ~ µ.

Local Exact Sampler
Uniform sampling ind. set in graphs with max-degree ∆≤5:

[Feng, Sun, Y., PODC’17]: 
If ∆≥6, there is an infinite sequence of graphs G with diam(G) = nΩ(1) 
such that even approx. sampling ind. set requires Ω(diam) rounds.



Locality of Sampling

SSM

Correlation
Decay:

Inference: Sampling:

local approx.
sampling

local approx.
inference

local approx.
inference

local exact
sampling

with additive error

with multiplicative error

For Gibbs distributions (defined by local factors):

O(log2 n) factor

easy

O(log n)-round O(log3 n)-round

exponential
decay



Hold for Local Computation!



Algorithmic Implications

•                  -round distributed algorithm for sampling 
matchings in graphs with max-degree Δ;

•              -round distributed algorithms for sampling:

• hardcore model (weighted independent set) in the 
uniqueness regime;

• antiferromagnetic Ising model in the uniqueness regimes;

• antiferromagnetic 2-spin systems in the uniqueness regimes;

• weighted hypergraph matchings in the uniqueness regimes;

• uniform q-coloring/list-coloring when q>1.763…Δ in 
triangle-free graphs with max-degree Δ; 

• … …

O(
p
� log3 n)

O(log3 n)

(due to the state-of-the-arts of strong spatial mixing)



Thank you!


