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|Jerrum-Valiant-Vazirani ’86]:

(For self-reducible problems)

approx. counting (approx., exact) sampling
is tractable is tractable



Computational Phase
Transition

Sampling almost-uniform independent set in
graphs with maximum degree A:

o [Weitz, STOC’06]: If A<S, poly-time.

® [Sly, best paper in FOCS’10]: If A>6, no poly-time
algorithm unless NP=RP.

A phase transition occurs when A: 5—6.

Local Computation?



Local Computation

“What can be computed locally?” [Naor, Stockmeyer *93]

the LOCAL model [Linial *87]:

® Communications are
synchronized.
® |n each round, each node can:

~ exchange unbounded messages
with all neighbors

© perform unbounded local
computation

- read/write to unbounded local
memory.

® |n ¢ rounds: each node can collect information up to distance t.




Example: Sample Independent Set

w: uniform distribution of independent sets in G.

Y {0,1}7 indicates an independent set

® Each vEV returnsa Y, {0,1},
such that Y= (Y)her ~ U

® Or: drv(Y, u) < l/poly(n)

network G(V,E)



Inference (Local Counting)

w: uniform distribution of independent sets in G.

uy - marginal distribution at v conditioning on ¢ €{0,1}5.

el 1y py(y) = Pr Yo =y|¥s =0

® Each v € § receives oy as input.

® Each v € V' returns a marginal
distribution fi,, such that:

S

1
7 =n0) =T Prvi,=0|vi<i:v, =0
z " 1;[ Yo : network G(V,E)

/. # of independent sets




Gibbs Distribution

(with pairwise interactions)

® Fach vertex corresponds to a
variable with finite domain [g]. network G(V,E):

® Each edge e=(u,v)EE has a matrix
(binary constraint):

Ae: [q] x [q] —[0,1]

® Each vertex v&V has a vector
(unary constraint):

by: [q] — [0,1]
e Gibbs distribution u: Vo&[q]V

(o) o H Ae(0u,0v) H by(0v)

GZ(U,U)EE ’UEV




Gibbs Distribution

(with pairwise interactions)

e Gibbs distribution u: Vo€[q]”
,UJ(O') X H Ae(o-uao-v) H bU(O-’U)

e=(u,v)eEFE veV

network G(V,E):

® independent set:

1
A, = 1 b, =

-
O_
® Jocal conflict colorings:

[Fraigniaud, Heinrich, Kosowski, FOCS’16]

Ae: [gq] % [q] — 10,1} Ae: [g] % [gq] — [0,1]
bv: [q] — {0,1} bv: [q] — [0,1]




Gibbs Distribution

e Gibbs distribution u: Vo€[q]”

po)oc [ flos)

network G(V,E):

each (f,5) € F

is a local constraints (factors):
f:a)” = Rxo
S € Vwith diamg(S) = O(1)



A Motivation:
Distributed Machine Learning

® Data are stored in a
distributed system.

® Distributed algorithms for:

® sampling from a joint
distribution (specified
by a probabilistic
graphical model);

® inferring according to a
probabilistic graphical
model.




Computational Phase
Transition

Sampling almost-uniform independent set in
graphs with maximum degree A:

o [Weitz, STOC’06]: If A<5, poly-time.

® [Sly, FOCS’10]: If A>6, no poly-time algorithm
unless NP=RP.

A phase transition occurs when A: 5—6.



Decay of Correlation

uy - marginal distribution at v conditioning on o €{0,1}%.

strong spatial mixing (SSM):

vV boundary condition B&{0,1 }7-sphere(v);
drv (ug, uy?) < poly(n) - exp(—(r))

SSM  (iff A<5 when y is uniform
_~"_ distribution of ind. sets)

N

approx. inference is solvable
in O(log n) rounds

in the LOCAL model




Locality of Counting & Sampling

For Gibbs distributions (defined by local factors):

Correlation Inference: . Sampling:
Decay
"""" local approx. ; local approx.
SSM . : .
________ inference . sampling

with additive error < easy

: N

NZ O(log? n) facto>

local approx. > local exact
sampling

inference

with multiplicative error




Locality of Sampling

Inference:
local approx. local approx.
inference sampling
each v can compute a [l return a random ¥ = (Y¥y)ver
within O(log n)-ball whose distribution [ ~
S.t. dTV (Iuv”uv) < pol}lf(n) dTV (:u :u) — pol317(n)

sequential O(log n)-local procedure:

® scan vertices in V' in an arbitrary order vi, v, ..., vy

. ey el
e fori=1,2,...,n: sample Y, according to [, " -




Network Decomposition

(C,D) -network-decomposition of G

® classifies vertices into clusters;
® assign each cluster a color in [C];
® cach cluster has diameter <D;
® clusters are properly colored.

(C,Dy-ND: (C,D)-ND of G

Given a (C,D)"- ND:

sequential r-local procedure: = O(log n)

® scan vertices in V' in an arbitrary order vi, vo, ..., vy

- . Yoo Yo,
e fori=1,2,...,n: sample Y, accordingto f," i—1

can be simulated in O(CDr) rounds in LOCAL model




Network Decomposition

(C,D) -network-decomposition of G

® classifies vertices into clusters;
® assign each cluster a color in [C];
® cach cluster has diameter <D;
® clusters are properly colored.

(C,Dy-ND: (C,D)-ND of G

(O(log n), O(log n))"-ND can be
constructed in O(7 log? n) rounds w.h.p.

Limal, Saks, 1993] — [Ghaffari, Kuhn, Maus, 2017]:

r-local SLOCAL algorithm: O(rlog?n)-round LOCAL alg.:
vV ordering 7=(vi, v2, ..., vu), | |INID returns w.h.p. the Y@
returns random vector ¥ for some ordering 7




Locality of Sampling

Inference: Sampling:
O(log n)-rounc O(log3 n)-round
local approx.

inference

with additive error

local approx. > local exact
inference sampling

with multiplicative error



Local Exact Sampler

In LOCAL model:

® Each v&/J returns within fixed #(n) rounds:
® |ocal output ¥,&{0,1};
e |ocal failure F,&e{0,1}.

® Succeeds w.h.p.: Y ,erE[F,] = O(1/n).

e Correctness: conditioning on success, Y ~ (.



Jerrum-Valiant-Vazirani Sampler

[Jerrum-Valiant-Vazirani ’86]

3 an efficient algorithm that samples from [

AN

and evaluates /i(0) given any o € {0,1}"

multiplicative error: Vo € {0, 1} eV < % < el/m
Self-reduction:
1 GO | P
et AZh T (0y) = ZZ;::, ’;j_i)l) ~ oE1/n . 71 az_l(gi)
where ¢—1/27° < ggg < el/2n° by approx. counting




Jerrum-Valiant-Vazirani Sampler

[Jerrum-Valiant-Vazirani ’86]

AN

3 an efficient algorithm that samples from [
and evaluates /i(0) given any o € {0,1}"

—1/n? < fi(o) < ol/n

o , V. .
multiplicative error: Vo € {0,1}" : (o)

Sample a random Y ~ i ;

pick Yo= O ; (v i
accept Y with prob.: ¢ = Y o) eTnr € [e_5/” 1}

fail if otherwise; iY')

Vo € {0,1}"
fu(0)
fi(o)

PrlY = o A accept] = ji(o) -

5 1 o is ind. set
- @ n2 X .
0 otherwise



Boosting Local Inference

additive error:

....... . A 1
' oM | ::> IoFaI approx. drv (83, 147) < Sorm
o, - inference o
multiplicative error:
each v computes a /i, ol no
o P MU Moy (O)’ :uv(l) c [e—l/poly(n)’el/poly(n)}
within r-ball 17 (0) " pg (1)

local self-reduction
SSM > both are achievable with » = O(log n)

boosted sequential r-local sampler: 7= O(log n)

® scan vertices in V' in an arbitrary order vi, vo, ..., v,

- . Yoo Yo,
e fori=1,2,...,n: sample Y, according to f," i—1

. . . _1/n? (o n>2
multiplicative error: Vo € {0,1}" : e < % <el



SLOCAL JVV

Scan vertices in V' in an arbitrary order vi, v2, ..., V:
pass 1: sample Y€&€ {0,1}7 by boosted sequential 7-local sampler ji;

Voelq” : eV <

A

o) gy T r = O(log n) j

plo) —
pass 1’: construct a sequence of ind. sets D=Y, Y1, ..., ¥, =Y;
s.t. V0O<i<n: e®Yiagrees with Yover vy, ..., v

(¢ ¥; and Y;. differ only at v; )
vi samples F,, € {0,1} independently with Pr[F,, = 0] = g,

(Y1) 3,2 _5/n?
where |q,, = — - e c |e , 1
[ H(Yz') y [ ]

<
Each vE&V returns: O(log n)-local ]

e ¥,E{0,1} to indicate the ind.set; \tocompute
o I, &{0,1} indicate failure at v.




Scan vertices in V' in an arbitrary order vi, v2, ..., Vi:

pass 1: sample Y& {0,1}" by boosted sequential r-local sampler fi;
Vo elq]” @ eV <

A

fi(o) < /7 T r = O(log n) ]

p(o)
pass 1’: construct a sequence of ind. sets U=Y,, Y1, ..., ¥, =Y;
s.t. V0<i<n: Y agrees with Yover vy, ..., v
* Yiand Y. differ only at v;

vi samples F,, € {0,1} independently with Pr[F,, = 0] = g,
/l(Y’i—l) . e—S/er2
(Y ;)

where @, =

Vo € {0,1}" :

PrlY =0 AVi: F, =0

|
>
2
()
c
|
>
2
N\
| =
<
|
@
e
~
31\3
N—

()  _s 1 o is ind. set
(o) (0 otherwise




Network Decomposition

(C,D) -network-decomposition of G

® classifies vertices into clusters;
® assign each cluster a color in [C];
® cach cluster has diameter <D;
® clusters are properly colored.

(C,Dy-ND: (C,D)-ND of G

(O(log n), O(log n))"-ND can be
constructed in O(7 log? n) rounds w.h.p.

Limal, Saks, 1993] — [Ghaffari, Kuhn, Maus, 2017]:

r-local SLOCAL algorithm: O(rlog?n)-round LOCAL alg.:
vV ordering 7=(vi, v2, ..., vu), | |INID returns w.h.p. the Y@
returns random vector ¥ for some ordering 7




Local Exact Sampler

Uniform sampling ind. set in graphs with max-degree A<5:
e Each v&V returns in O(log3 n) rounds:
® |ocal output ¥,&{0,1};
® |ocal failure F,e{0,1}.
® Succeeds w.h.p.: Y ,erE[F,] = O(1/n).

® Correctness: conditioning on success, ¥ ~ 1.

|[Feng, Sun, Y., PODC’17]:

If A>6, there is an infinite sequence of graphs G with diam(G) = nf1
such that even approx. sampling ind. set requires Q(diam) rounds.



Locality of Sampling

For Gibbs distributions (defined by local factors):

Correlation Inference: Sampling:
Decay: O(log n)-rounc O(log? n)-round

- . E E E

" coM : IoFaI approx. <
: ; inference

> local approx.
sampling

---------

I E B O A O O .

exponential  with additive error < easy

decay : N

NZ O(log? n) facto>

local approx. > local exact
inference sampling

with multiplicative error
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[Jerrum-Valiant-Vazirani ’86]:

(For self-reducible problems)

approx. counting <'1:> (appro
is tractable

x., exact) sampling
is tractable

Computational Phase
Transition

Sampling almost-uniform independent set in
graphs with maximum degree A:

e [Weitz, STOC’06]: If A<5, poly-time.

e [Sly, FOCS’10]: If A>6, no poly-time algorithm
unless NP=RP.

A phase transition occurs when A: 5—6.

Hold for Local Computation!



Algorithmic Implications

(due to the state-of-the-arts of strong spatial mixing)

® O(vAlog®n)-round distributed algorithm for sampling
matchings in graphs with max-degree A;

® O(log® n)-round distributed algorithms for sampling:

® hardcore model (weighted independent set) in the
uniqueness regime;

® antiferromagnetic Ising model in the uniqueness regimes;
® antiferromagnetic 2-spin systems in the uniqueness regimes;
® weighted hypergraph matchings in the uniqueness regimes;

® uniform g-coloring/list-coloring when ¢g>1.763...A in
triangle-free graphs with max-degree A;






