On Local Distributed Sampling and Counting

Yitong Yin Nanjing University

Joint work with Weiming Feng (Nanjing University)

Counting and Sampling

RANDOM GENERATION OF COMBINATORIAL STRUCTURES FROM A UNIFORM DISTRIBUTION

Mark R. JERRUM

Department of Computer Science, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom

Leslie G. VALIANT *

Aiken Computation Laboratory, Harvard University, Cambridge, MA 02138, U.S.A.

Vijay V. VAZIRANI **

Computer Science Department, Cornell University, Ithaca, NY 14853, U.S.A.



[Jerrum-Valiant-Vazirani '86]:

(For self-reducible problems)

approx. counting is tractable

(approx., exact) sampling is tractable

Computational Phase Transition

Sampling almost-uniform independent set in graphs with maximum degree Δ :

- [Weitz, STOC'06]: If $\Delta \leq 5$, poly-time.
- [Sly, best paper in FOCS'10]: If $\Delta \ge 6$, no poly-time algorithm unless NP=RP.

A phase transition occurs when $\Delta: 5 \rightarrow 6$.

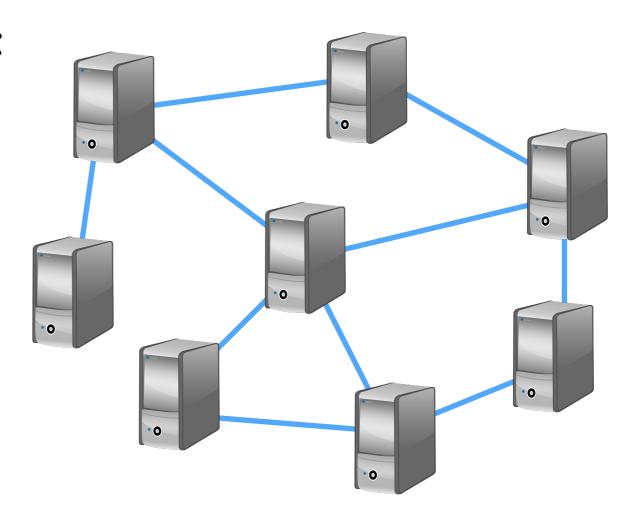
Local Computation?

Local Computation

"What can be computed locally?" [Naor, Stockmeyer '93]

the LOCAL model [Linial '87]:

- Communications are synchronized.
- In each round, each node can:
 - exchange unbounded messages with all neighbors
 - perform unbounded local computation
 - read/write to unbounded local memory.



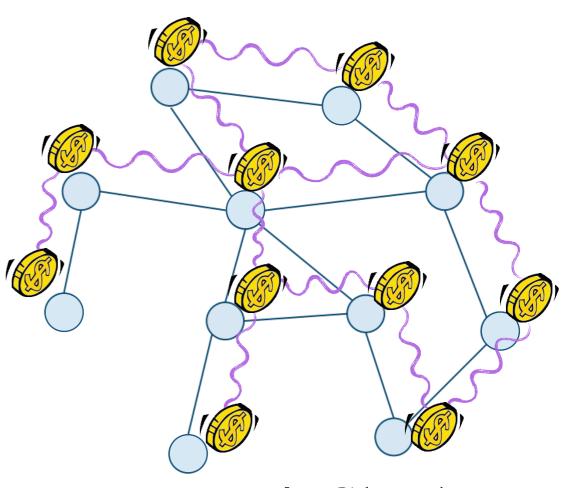
• In t rounds: each node can collect information up to distance t.

Example: Sample Independent Set

 μ : uniform distribution of independent sets in G.

 $Y \in \{0,1\}^V$ indicates an independent set

- Each $v \in V$ returns a $Y_v \in \{0,1\}$, such that $Y = (Y_v)_{v \in V} \sim \mu$
- Or: $d_{\text{TV}}(Y, \mu) < 1/\text{poly}(n)$



network G(V,E)

Inference (Local Counting)

 μ : uniform distribution of independent sets in G.

 μ_v^{σ} : marginal distribution at v conditioning on $\sigma \in \{0,1\}^{S}$.

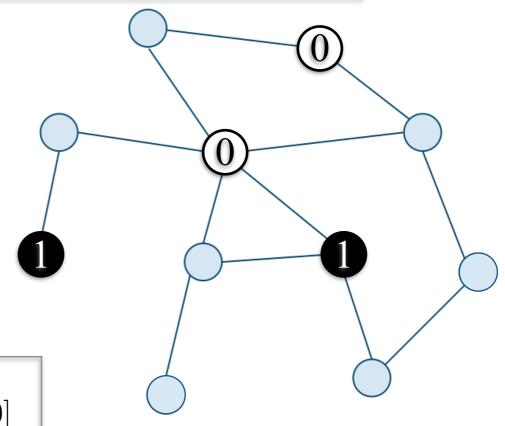
$$\forall y \in \{0, 1\}: \quad \mu_v^{\sigma}(y) = \Pr_{\mathbf{Y} \sim \mu} [Y_v = y \mid Y_S = \sigma]$$

- Each $v \in S$ receives σ_v as input.
- Each $v \in V$ returns a marginal distribution $\hat{\mu}_v^{\sigma}$ such that:

$$d_{\text{TV}}(\hat{\mu}_v^{\sigma}, \mu_v^{\sigma}) \le \frac{1}{\text{poly}(n)}$$

$$\frac{1}{Z} = \mu(\emptyset) = \prod_{i=1}^{n} \Pr_{\mathbf{Y} \sim \mu} [Y_{v_i} = 0 \mid \forall j < i : Y_{v_j} = 0]$$

Z: # of independent sets



network G(V,E)

Gibbs Distribution

(with pairwise interactions)

- Each vertex corresponds to a variable with finite domain [q].
- Each edge $e=(u,v)\in E$ has a matrix (binary constraint):

$$A_e$$
: $[q] \times [q] \rightarrow [0,1]$

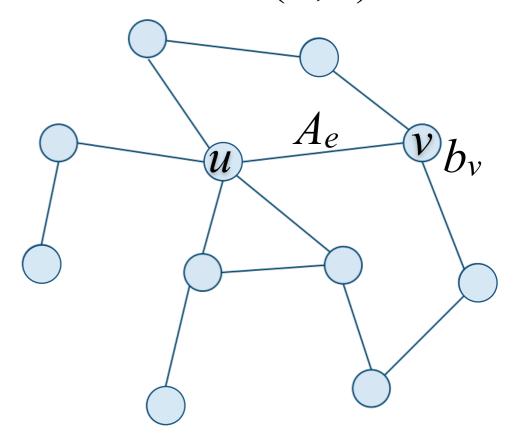
 Each vertex v∈V has a vector (unary constraint):

$$b_{v}: [q] \to [0,1]$$

• Gibbs distribution μ : $\forall \sigma \in [q]^V$

$$\mu(\sigma) \propto \prod_{e=(u,v)\in E} A_e(\sigma_u, \sigma_v) \prod_{v\in V} b_v(\sigma_v)$$

network G(V,E):



Gibbs Distribution

(with pairwise interactions)

• Gibbs distribution μ : $\forall \sigma \in [q]^V$

$$\mu(\sigma) \propto \prod_{e=(u,v)\in E} A_e(\sigma_u,\sigma_v) \prod_{v\in V} b_v(\sigma_v)$$

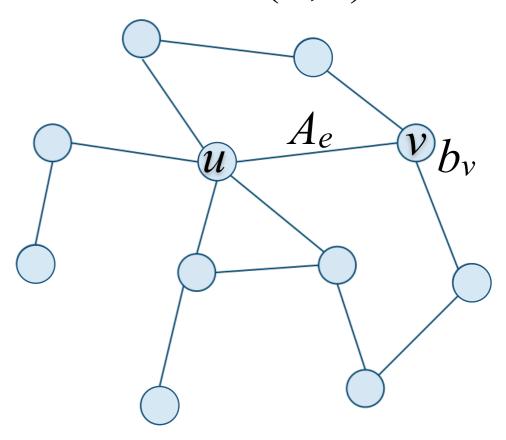
independent set:

$$A_e = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \quad b_v = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

• local conflict colorings: [Fraigniaud, Heinrich, Kosowski, FOCS'16]

$$A_e$$
: $[q] \times [q] \rightarrow \{0,1\}$
 b_v : $[q] \rightarrow \{0,1\}$

network G(V,E):



$$A_e$$
: $[q] \times [q] \rightarrow [0,1]$
 b_v : $[q] \rightarrow [0,1]$

Gibbs Distribution

• Gibbs distribution μ : $\forall \sigma \in [q]^V$

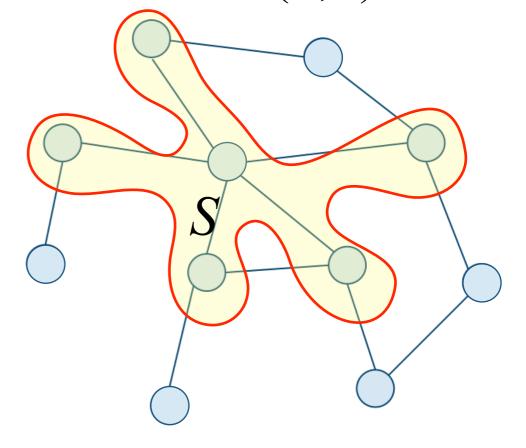
$$\mu(\sigma) \propto \prod_{(f,S)\in\mathcal{F}} f(\sigma_S)$$

each $(f, S) \in \mathcal{F}$ is a *local* constraints (factors):

$$f: [q]^S \to \mathbb{R}_{\geq 0}$$

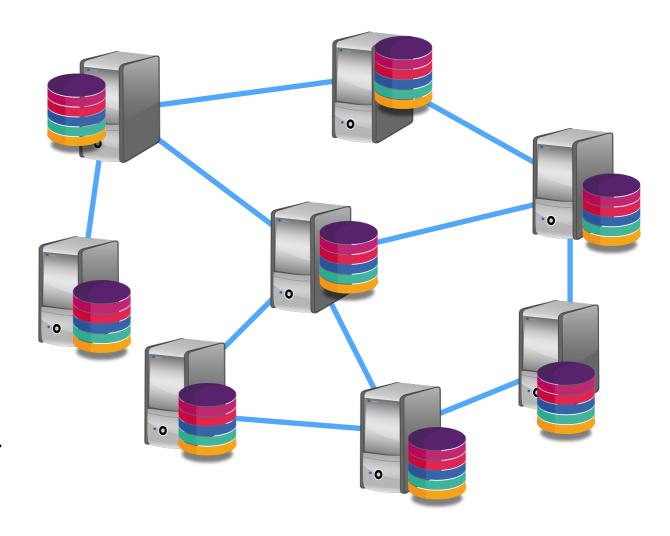
$$S \subseteq V$$
 with $diam_G(S) = O(1)$

network G(V,E):



A Motivation: Distributed Machine Learning

- Data are stored in a distributed system.
- Distributed algorithms for:
 - sampling from a joint distribution (specified by a probabilistic graphical model);
 - inferring according to a probabilistic graphical model.



Computational Phase Transition

Sampling almost-uniform independent set in graphs with maximum degree Δ :

- [Weitz, STOC'06]: If $\Delta \leq 5$, poly-time.
- [Sly, FOCS'10]: If $\Delta \ge 6$, no poly-time algorithm unless NP=RP.

A phase transition occurs when $\Delta: 5 \rightarrow 6$.

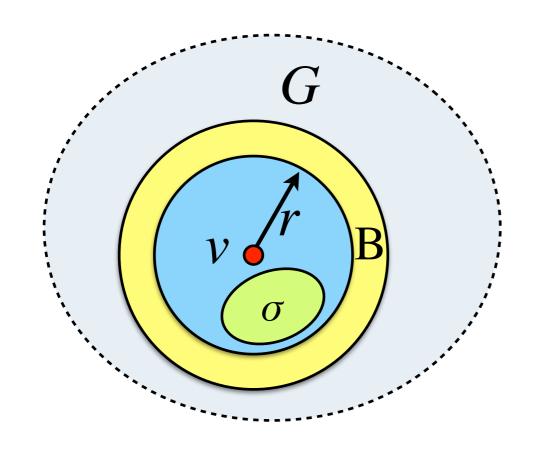
Decay of Correlation

 μ_v^{σ} : marginal distribution at v conditioning on $\sigma \in \{0,1\}^{S}$.

strong spatial mixing (SSM):

 \forall boundary condition $B \in \{0,1\}^{r-\text{sphere}(v)}$:

$$d_{\text{TV}}(\mu_v^{\sigma}, \mu_v^{\sigma, B}) \leq \text{poly}(n) \cdot \exp(-\Omega(r))$$

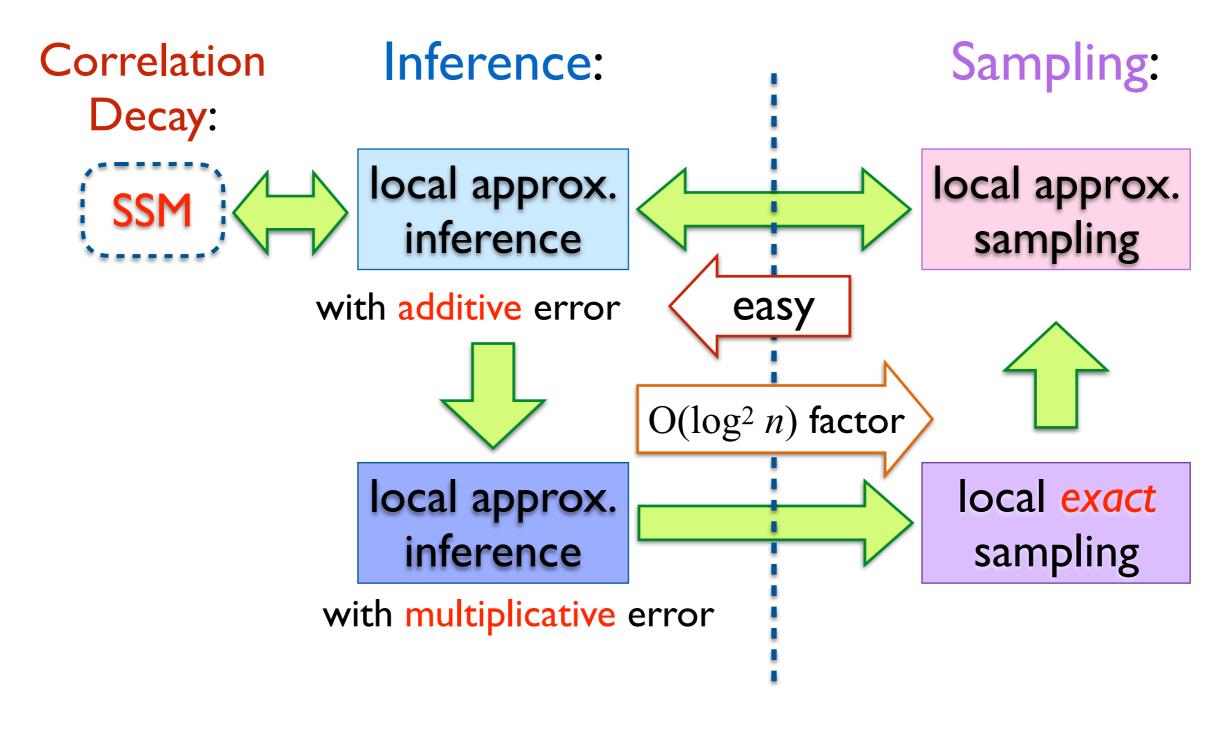


SSM (iff $\Delta \leq 5$ when μ is uniform distribution of ind. sets)

approx. inference is solvable in $O(\log n)$ rounds in the \mathcal{LOCAL} model

Locality of Counting & Sampling

For Gibbs distributions (defined by *local* factors):



Locality of Sampling

Correlation

Inference:

Sampling:

Decay:

local approx. inference

local approx. sampling

each v can compute a $\hat{\mu}_v^{\sigma}$ within $O(\log n)$ -ball

s.t.
$$d_{\mathrm{TV}}\left(\hat{\mu}_v^{\sigma}, \mu_v^{\sigma}\right) \leq \frac{1}{\mathrm{poly}(n)}$$

return a random $Y = (Y_v)_{v \in V}$ whose distribution $\hat{\mu} \approx \mu$

$$d_{\text{TV}}(\hat{\mu}, \mu) \le \frac{1}{\text{poly}(n)}$$

sequential $O(\log n)$ -local procedure:

- scan vertices in V in an arbitrary order $v_1, v_2, ..., v_n$
- for i=1,2,...,n: sample Y_{v_i} according to $\hat{\mu}_{v_i}^{Y_{v_1},...,Y_{v_{i-1}}}$

Network Decomposition

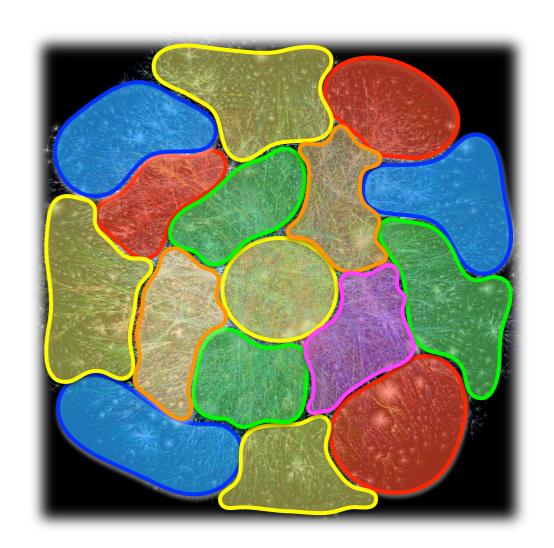
(C,D) -network-decomposition of G:

- classifies vertices into clusters;
- assign each cluster a color in [C];
- each cluster has diameter <D;
- clusters are properly colored.

$$(C,D)^r$$
-ND: (C,D) -ND of G^r

Given a $(C,D)^r$ - ND:

sequential r-local procedure: $r = O(\log n)$



$$r = O(\log n)$$

- scan vertices in V in an arbitrary order $v_1, v_2, ..., v_n$
- for i=1,2,...,n: sample Y_{v_i} according to $\hat{\mu}_{v_i}^{Y_{v_1},...,Y_{v_{i-1}}}$

can be simulated in O(CDr) rounds in LOCAL model

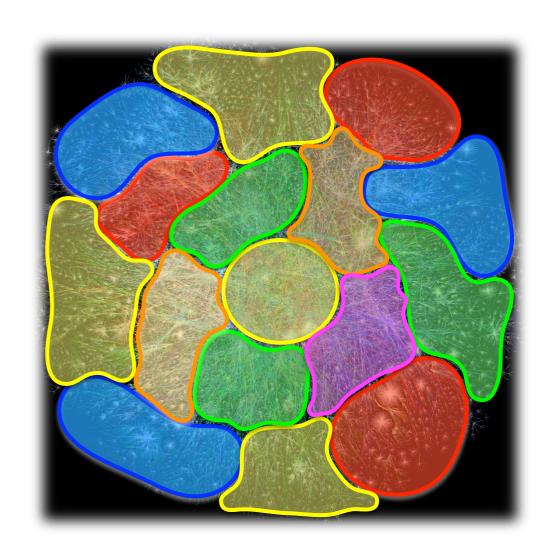
Network Decomposition

(C,D) -network-decomposition of G:

- classifies vertices into clusters;
- assign each cluster a color in [C];
- each cluster has diameter $\leq D$;
- clusters are properly colored.

$$(C,D)^r$$
-ND: (C,D) -ND of G^r

 $(O(\log n), O(\log n))^r$ -ND can be constructed in $O(r \log^2 n)$ rounds w.h.p.



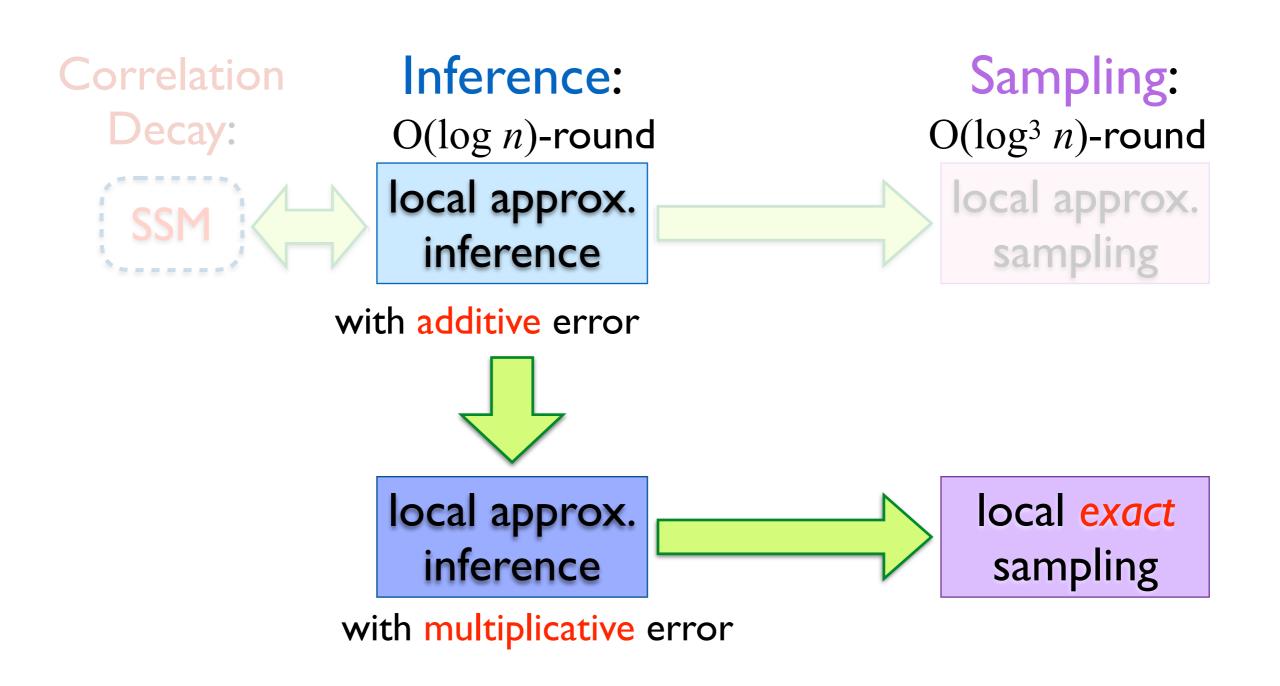
[Linial, Saks, 1993] — [Ghaffari, Kuhn, Maus, 2017]:

r-local SLOCAL algorithm: \forall ordering $\pi=(v_1, v_2, ..., v_n)$,

returns random vector $Y^{(\pi)}$

 $O(r log^2 n)$ -round LOCAL alg.: returns w.h.p. the $Y^{(\pi)}$ for some ordering π

Locality of Sampling



Local Exact Sampler

In LOCAL model:

- Each $v \in V$ returns within fixed t(n) rounds:
 - local output $Y_v \in \{0,1\}$;
 - local failure $F_v \in \{0,1\}$.
- Succeeds w.h.p.: $\sum_{v \in V} \mathbf{E}[F_v] = O(1/n)$.
- Correctness: conditioning on success, $Y \sim \mu$.

Jerrum-Valiant-Vazirani Sampler

[Jerrum-Valiant-Vazirani '86]

 \exists an efficient algorithm that samples from $\,\hat{\mu}\,$ and evaluates $\,\hat{\mu}(\sigma)$ given any $\sigma\in\{0,1\}^V$

multiplicative error: $\forall \sigma \in \{0,1\}^V: e^{-1/n^2} \leq \frac{\hat{\mu}(\sigma)}{\mu(\sigma)} \leq e^{1/n^2}$

Self-reduction:

$$\mu(\sigma) = \prod_{i=1}^{n} \mu_{v_i}^{\sigma_1, \dots, \sigma_{i-1}}(\sigma_i) = \prod_{i=1}^{n} \frac{Z(\sigma_1, \dots, \sigma_i)}{Z(\sigma_1, \dots, \sigma_{i-1})}$$

let
$$\hat{\mu}_{v_i}^{\sigma_1, ..., \sigma_{i-1}}(\sigma_i) = \frac{\hat{Z}(\sigma_1, ..., \sigma_i)}{\hat{Z}(\sigma_1, ..., \sigma_{i-1})} \approx e^{\pm 1/n^3} \cdot \mu_{v_i}^{\sigma_1, ..., \sigma_{i-1}}(\sigma_i)$$

where
$$e^{-1/2n^3} \leq \frac{\hat{Z}(\cdots)}{Z(\cdots)} \leq e^{1/2n^3}$$
 by approx. counting

Jerrum-Valiant-Vazirani Sampler

[Jerrum-Valiant-Vazirani '86]

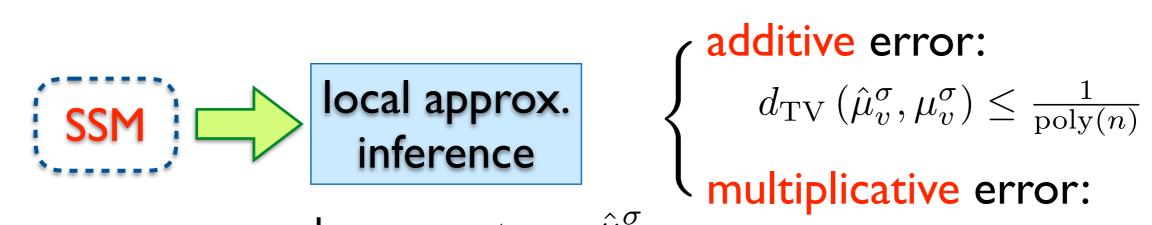
 \exists an efficient algorithm that samples from $\,\hat{\mu}\,$ and evaluates $\,\hat{\mu}(\sigma)$ given any $\sigma\in\{0,1\}^V$

multiplicative error: $\forall \sigma \in \{0,1\}^V: e^{-1/n^2} \leq \frac{\hat{\mu}(\sigma)}{\mu(\sigma)} \leq e^{1/n^2}$

Sample a random $Y \sim \hat{\mu}$; pick $Y_0 = \emptyset$; accept Y with prob.: $q = \frac{\hat{\mu}(Y_0)}{\hat{\mu}(Y)} \cdot \mathrm{e}^{-\frac{3}{n^2}} \in \left[\mathrm{e}^{-5/n^2}, 1\right]$ fail if otherwise;

 $\forall \sigma \in \{0, 1\}^{V}:$ $\Pr[\mathbf{Y} = \sigma \land \text{ accept}] = \hat{\mu}(\sigma) \cdot \frac{\hat{\mu}(\emptyset)}{\hat{\mu}(\sigma)} \cdot e^{-\frac{3}{n^{2}}} \propto \begin{cases} 1 & \sigma \text{ is ind. set} \\ 0 & \text{otherwise} \end{cases}$

Boosting Local Inference



each v computes a $\hat{\mu}_v^{\sigma}$ within r-ball

$$d_{\text{TV}}\left(\hat{\mu}_v^{\sigma}, \mu_v^{\sigma}\right) \le \frac{1}{\text{poly}(n)}$$

$$\frac{\hat{\mu}_v^{\sigma}(0)}{\mu_v^{\sigma}(0)}, \frac{\hat{\mu}_v^{\sigma}(1)}{\mu_v^{\sigma}(1)} \in \left[e^{-1/\text{poly}(n)}, e^{1/\text{poly}(n)} \right]$$

both are achievable with $r = O(\log n)$

boosted sequential r-local sampler: $r = O(\log n)$

- scan vertices in V in an arbitrary order $v_1, v_2, ..., v_n$
- for i=1,2,...,n: sample Y_{v_i} according to $\hat{\mu}_{v_i}^{Y_{v_1},...,Y_{v_{i-1}}}$

multiplicative error: $\forall \sigma \in \{0,1\}^V: e^{-1/n^2} \leq \frac{\hat{\mu}(\sigma)}{\mu(\sigma)} \leq e^{1/n^2}$

SLOCAL JVV

Scan vertices in V in an arbitrary order $v_1, v_2, ..., v_n$:

pass 1: sample $Y \in \{0,1\}^V$ by boosted sequential r-local sampler $\hat{\mu}$;

$$\forall \sigma \in [q]^V : e^{-1/n^2} \le \frac{\hat{\mu}(\sigma)}{\mu(\sigma)} \le e^{1/n^2}$$
 $r = O(\log n)$

pass 1': construct a sequence of ind. sets $\emptyset = Y_0, Y_1, ..., Y_n = Y$;

s.t.
$$\forall 0 \le i \le n$$
: • Y_i agrees with Y over v_1, \ldots, v_i

• Y_i and Y_{i-1} differ only at v_i

 v_i samples $F_{v_i} \in \{0,1\}$ independently with $\Pr[F_{v_i} = 0] = q_{v_i}$

where
$$q_{v_i} = \frac{\hat{\mu}(\boldsymbol{Y}_{i-1})}{\hat{\mu}(\boldsymbol{Y}_i)} \cdot e^{-3/n^2} \in [e^{-5/n^2}, 1]$$

Each $v \in V$ returns:

- $Y_v \in \{0,1\}$ to indicate the ind. set;
- $F_v \in \{0,1\}$ indicate failure at v.

 $O(\log n)$ -local to compute

Scan vertices in V in an arbitrary order $v_1, v_2, ..., v_n$:

pass 1: sample $Y \in \{0,1\}^V$ by boosted sequential r-local sampler $\hat{\mu}$;

$$\forall \sigma \in [q]^V : e^{-1/n^2} \le \frac{\hat{\mu}(\sigma)}{\mu(\sigma)} \le e^{1/n^2}$$
 $r = O(\log n)$

pass 1': construct a sequence of ind. sets $\emptyset = Y_0, Y_1, ..., Y_n = Y$;

s.t. $\forall 0 \le i \le n$: • Y_i agrees with Y over $v_1, ..., v_i$

• Y_i and Y_{i-1} differ only at v_i

 v_i samples $F_{v_i} \in \{0,1\}$ independently with $\Pr[F_{v_i} = 0] = q_{v_i}$

where
$$q_{v_i} = \frac{\hat{\mu}(\boldsymbol{Y}_{i-1})}{\hat{\mu}(\boldsymbol{Y}_i)} \cdot e^{-3/n^2} \in [e^{-5/n^2}, 1]$$

 $\forall \sigma \in \{0,1\}^V:$

$$\Pr[\mathbf{Y} = \sigma \land \forall i : F_{v_i} = 0] = \hat{\mu}(\sigma) \prod_{i=1}^{n} q_{v_i} = \hat{\mu}(\sigma) \prod_{i=1}^{n} \left(\frac{\hat{\mu}(\mathbf{Y}_{i-1})}{\hat{\mu}(\mathbf{Y}_i)} \cdot e^{-3/n^2} \right) \Big|_{\mathbf{Y}_n = \mathbf{Y} = \sigma}$$

$$= \hat{\mu}(\sigma) \cdot \frac{\hat{\mu}(\emptyset)}{\hat{\mu}(\sigma)} \cdot e^{-\frac{3}{n}} \quad \propto \begin{cases} 1 & \sigma \text{ is ind. set} \\ 0 & \text{otherwise} \end{cases}$$

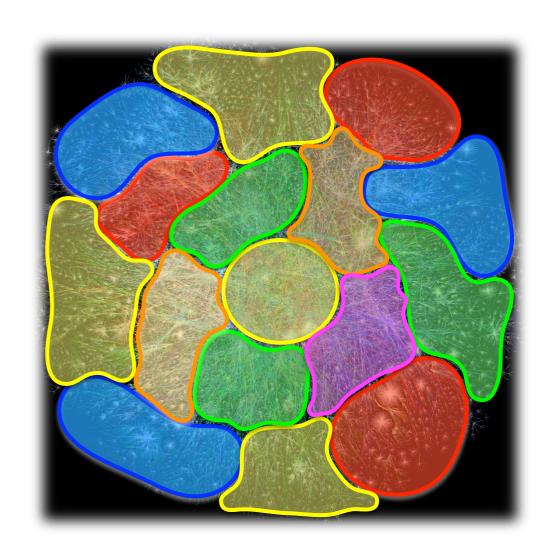
Network Decomposition

(C,D) -network-decomposition of G:

- classifies vertices into clusters;
- assign each cluster a color in [C];
- each cluster has diameter $\leq D$;
- clusters are properly colored.

$$(C,D)^r$$
-ND: (C,D) -ND of G^r

 $(O(\log n), O(\log n))^r$ -ND can be constructed in $O(r \log^2 n)$ rounds w.h.p.



[Linial, Saks, 1993] — [Ghaffari, Kuhn, Maus, 2017]:

r-local SLOCAL algorithm: \forall ordering $\pi=(v_1, v_2, ..., v_n)$,

returns random vector $Y^{(\pi)}$

 $O(r log^2 n)$ -round LOCAL alg.: returns w.h.p. the $Y^{(\pi)}$ for some ordering π

Local Exact Sampler

Uniform sampling ind. set in graphs with max-degree $\Delta \le 5$:

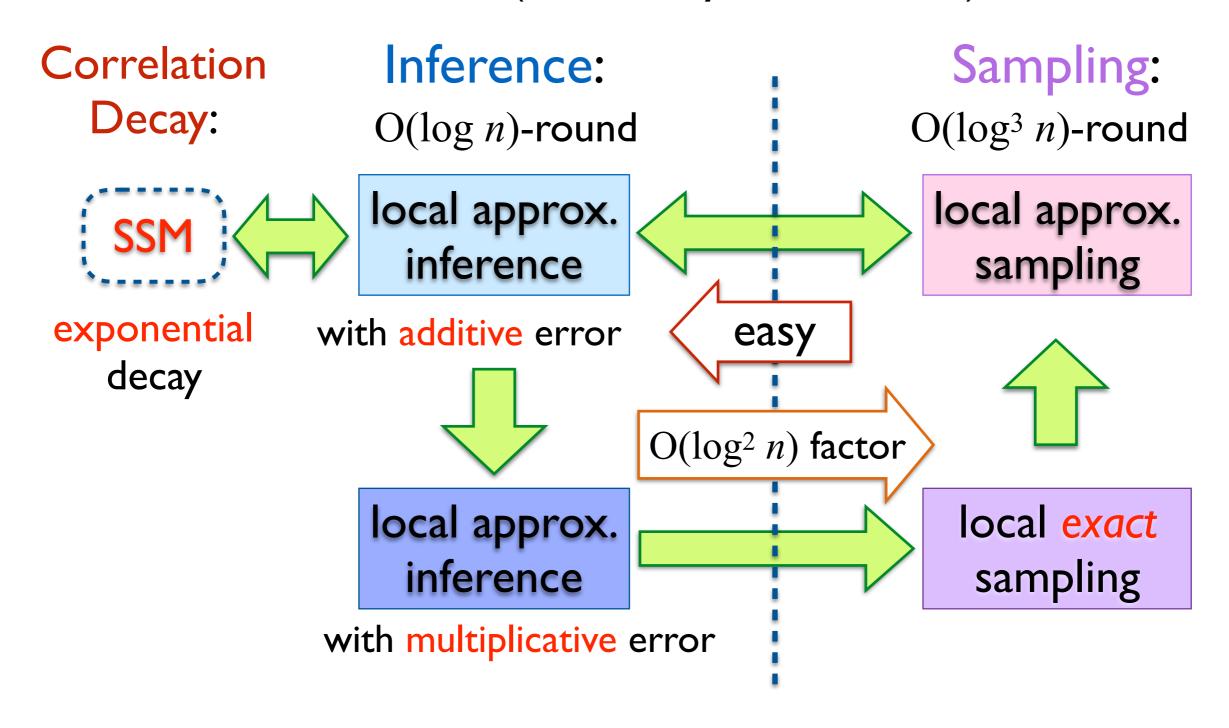
- Each $v \in V$ returns in $O(\log^3 n)$ rounds:
 - local output $Y_v \in \{0,1\}$;
 - local failure $F_v \in \{0,1\}$.
- Succeeds w.h.p.: $\sum_{v \in V} \mathbf{E}[F_v] = O(1/n)$.
- Correctness: conditioning on success, $Y \sim \mu$.

[Feng, Sun, Y., PODC'17]:

If $\Delta \geq 6$, there is an infinite sequence of graphs G with $diam(G) = n^{\Omega(1)}$ such that even approx. sampling ind. set requires $\Omega(diam)$ rounds.

Locality of Sampling

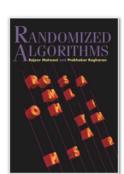
For Gibbs distributions (defined by local factors):



Counting and Sampling

RANDOM GENERATION OF COMBINATORIAL STRUCTURES

Vijay V. VAZIRANI **



[Jerrum-Valiant-Vazirani '86]:

(For self-reducible problems)

is tractable

approx. counting (approx., exact) sampling is tractable

Computational Phase **Transition**

Sampling almost-uniform independent set in graphs with maximum degree Δ :

- [Weitz, STOC'06]: If $\Delta \leq 5$, poly-time.
- [Sly, FOCS'10]: If $\Delta \ge 6$, no poly-time algorithm unless NP=RP.

A phase transition occurs when Δ : $5\rightarrow6$.

Hold for Local Computation!

Algorithmic Implications

(due to the state-of-the-arts of strong spatial mixing)

- $O(\sqrt{\Delta} \log^3 n)$ -round distributed algorithm for sampling matchings in graphs with max-degree Δ ;
- $O(\log^3 n)$ -round distributed algorithms for sampling:
 - hardcore model (weighted independent set) in the uniqueness regime;
 - antiferromagnetic Ising model in the uniqueness regimes;
 - antiferromagnetic 2-spin systems in the uniqueness regimes;
 - weighted hypergraph matchings in the uniqueness regimes;
 - uniform q-coloring/list-coloring when $q>1.763...\Delta$ in triangle-free graphs with max-degree Δ ;

•

Thank you!